Primary Dural Repair via an Endoscopic Endonasal Corridor: Preliminary Development of a 3D-Printed Model for Training

Author(s):  
Ivanna Nebor ◽  
Ahmed E. Hussein ◽  
Kora Montemagno ◽  
Rebecca Fumagalli ◽  
Ikrame Labiad ◽  
...  

Abstract Objectives Endonasal suturing is an investigational method for dural repair that has been reported to decrease the incidence of cerebrospinal fluid fistula. This method requires handling of single-shaft instrumentation in the narrow endonasal corridor. In this study, we designed a low-cost, surgical model using three-dimensional (3D) printing technology to simulate dural repair through the endonasal corridor and subsequently assess the utility of the model for surgical training. Methods Using an Ultimaker 2+ printer, a 3D-printed replica of the cranial base and nasal cavity was fitted with tissue allograft to recapitulate the dural layer. Residents, fellows, and attending surgeons were asked to place two sutures using a 0-degree endoscope and single-shaft needle driver. Task completion time was recorded. Participants were asked to fill out a Likert scale questionnaire after the experiment. Results Twenty-six participants were separated into groups based on their prior endoscope experience: novice, intermediate, and expert. Twenty-one (95.5%) residents and fellows rated the model as “excellent” or “good” in enhancing their technical skills with endoscopic instrumentation. Three of four (75%) of attendings felt that the model was “excellent” or “good” in usefulness for training in dural suturing. Novice participants required an average of 11 minutes for task completion, as compared with 8.7 minutes for intermediates and 5.7 minutes for experts. Conclusion The proposed model appears to be highly effective in enhancing the endoscopic skills and recapitulating the task of dural repair. Such a low-cost model may be especially important in enhancing endoscopic facility in countries/regions with limited access to cadaveric specimens.

Author(s):  
Ivanna Nebor ◽  
Zoe Anderson ◽  
Juan C. Mejia-Munne ◽  
Ahmed Hussein ◽  
Kora Montemagno ◽  
...  

Abstract Objective Endonasal dural suturing (EDS) has been reported to decrease the incidence of cerebrospinal fluid fistula. This technique requires handling of single-shaft instrumentation in the narrow endonasal corridor. It has been proposed that three-dimensional (3D) endoscopes were associated with improved depth perception. In this study, we sought to perform a comparison of two-dimensional (2D) versus 3D endoscopy by assessing surgical proficiency in a simulated model of EDS. Materials and Methods Twenty-six participants subdivided into groups based on previous endoscopic experience were asked to pass barbed sutures through preset targets with either 2D (Storz Hopkins II) or 3D (Storz TIPCAM) endoscopes on 3D-printed simulation model. Surgical precision and procedural time were measured. All participants completed a Likert scale questionnaire. Results Novice, intermediate, and expert groups took 11.0, 8.7, and 5.7 minutes with 2D endoscopy and 10.9, 9.0, and 7.6 minutes with 3D endoscopy, respectively. The average deviation for novice, intermediate, and expert groups (mm) was 5.5, 4.4, and 4.3 with 2D and 6.6, 4.6, and 3.0 with 3D, respectively. No significant difference in procedural time or accuracy was found in 2D versus 3D endoscopy. 2D endoscopic visualization was preferred by the majority of expert/intermediate participants, while 3D endoscopic visualization by the novice group. Conclusion In this pilot study, there was no statistical difference in procedural time or accuracy when utilizing 2D versus 3D endoscopes. While it is possible that widespread familiarity with 2D endoscopic equipment has biased this study, preliminary analysis suggests that 3D endoscopy offers no definitive advantage over 2D endoscopy in this simulated model of EDS.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4740
Author(s):  
Sergio Terranova ◽  
Filippo Costa ◽  
Giuliano Manara ◽  
Simone Genovesi

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On–Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Tomás A. Georgiou ◽  
Davide Asnaghi ◽  
Alva Liang ◽  
Alice M. Agogino

This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rommel S. Araujo ◽  
Camille R. Silva ◽  
Severino P. N. Netto ◽  
Edgard Morya ◽  
Fabricio L. Brasil

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain–machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal—electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


2020 ◽  
pp. bmjstel-2020-000663
Author(s):  
Patrick Gallagher ◽  
Ryan Smith ◽  
Gillian Sheppard

BackgroundThere is a significant learning curve when teaching ultrasonography to medical trainees; task trainers can help learners to bridge this gap and develop their skills. Three-dimensional printing technology has the potential to be a great tool in the development of such simulators. ObjectiveThis scoping review aimed to identify what 3D-printed models have been used in ultrasound education to date, how they were created and the pros and limitations involved.DesignResearchers searched three online databases to identify 3D-printed ultrasound models used in medical education.ResultsTwelve suitable publications were identified for inclusion in this review. The models from included articles simulated largely low frequency and/or high stakes events, with many models simulating needle guidance procedures. Most models were created by using patient imaging data and a computer-aided design software to print structures directly or print casting molds. The benefits of 3D-printed educational trainers are their low cost, reproducibility, patient specificity and accuracy. The current limitations of this technology are upfront investments and a lack of optimisation of materials.ConclusionsThe use of 3D-printed ultrasound task trainers is in its infancy, and more research is needed to determine whether or not this technology will benefit medical learners in the future.


2020 ◽  
Vol 11 (1) ◽  
pp. 161-170
Author(s):  
J-R. R. Diego ◽  
Dan William C. Martinez ◽  
Gerald S. Robles ◽  
John Ryan C. Dizon

AbstractThis study addresses the need for assistive technology of people who lost control of their upper limbs as well as people who are undergoing rehabilitation. Loss of upper limb control causes lack of functionality and social acceptability especially for many people in developing countries with fewer available technology. The study develops a modern but low-cost prosthetic device that can be controlled by users using a smartphone and can be rapidly manufactured using three-dimensional printing (3D printing) of plastic materials. The development of the prosthetic device includes designing the mechanical and electronic parts, programming the Arduino board and Android application for control, simulation and analysis of 3D printed parts most subjected to stress, and 3D printing the parts under different settings. The device was tested in terms of time spent and capacity of lifting varying loads when not worn and when worn by users. The device can effectively lift 500 grams of load in one second for a person weighing between 50 to 60 kilograms.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 168
Author(s):  
Maria Sevastaki ◽  
Vassilis M. Papadakis ◽  
Cosmin Romanitan ◽  
Mirela Petruta Suchea ◽  
George Kenanakis

The present paper reports a novel approach for fabrication of eco-friendly ZnO nanoparticles onto three-dimensional (3D)-printed polylactic acid (PLA) scaffolds/structures. Several alcohol-based traditional Greek liquors were used to achieve the corrosion of metallic zinc collected from a typical galvanic anode to obtain photocatalytic active nanostructured ZnO, varying from water, to Greek “ouzo” and “raki”, and pure ethanol, in combination with “Baker’s ammonia” (ammonium bicarbonate), sold worldwide in every food store. The photocatalytic active ZnO nanostructures onto three-dimensional (3D)-printed PLA scaffolds were used to achieve the degradation of 50 ppm paracetamol in water, under UV irradiation. This study provides evidence that following the proposed low-cost, eco-friendly routes for the fabrication of large-scale photocatalysts, an almost 95% degradation of 50 ppm paracetamol in water can be achieved, making the obtained 3D ZnO/PLA structures excellent candidates for real life environmental applications. This is the first literature research report on a successful attempt of using this approach for the engineering of low-cost photocatalytic active elements for pharmaceutical contaminants in waters.


2022 ◽  
Vol 8 ◽  
Author(s):  
Charbel Tawk ◽  
Rahim Mutlu ◽  
Gursel Alici

A single universal robotic gripper with the capacity to fulfill a wide variety of gripping and grasping tasks has always been desirable. A three-dimensional (3D) printed modular soft gripper with highly conformal soft fingers that are composed of positive pressure soft pneumatic actuators along with a mechanical metamaterial was developed. The fingers of the soft gripper along with the mechanical metamaterial, which integrates a soft auxetic structure and compliant ribs, was 3D printed in a single step, without requiring support material and postprocessing, using a low-cost and open-source fused deposition modeling (FDM) 3D printer that employs a commercially available thermoplastic poly (urethane) (TPU). The soft fingers of the gripper were optimized using finite element modeling (FEM). The FE simulations accurately predicted the behavior and performance of the fingers in terms of deformation and tip force. Also, FEM was used to predict the contact behavior of the mechanical metamaterial to prove that it highly decreases the contact pressure by increasing the contact area between the soft fingers and the grasped objects and thus proving its effectiveness in enhancing the grasping performance of the gripper. The contact pressure can be decreased by up to 8.5 times with the implementation of the mechanical metamaterial. The configuration of the highly conformal gripper can be easily modulated by changing the number of fingers attached to its base to tailor it for specific manipulation tasks. Two-dimensional (2D) and 3D grasping experiments were conducted to assess the grasping performance of the soft modular gripper and to prove that the inclusion of the metamaterial increases its conformability and reduces the out-of-plane deformations of the soft monolithic fingers upon grasping different objects and consequently, resulting in the gripper in three different configurations including two, three and four-finger configurations successfully grasping a wide variety of objects.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1277 ◽  
Author(s):  
Federica Barbaresco ◽  
Matteo Cocuzza ◽  
Candido Fabrizio Pirri ◽  
Simone Luigi Marasso

The present work describes a novel microfluidic free-flow electrophoresis device developed by applying three-dimensional (3D) printing technology to rapid prototype a low-cost chip for micro- and nanoparticle collection and analysis. Accurate reproducibility of the device design and the integration of the inlet and outlet ports with the proper tube interconnection was achieved by the additive manufacturing process. Test prints were performed to compare the glossy and the matte type of surface finish. Analyzing the surface topography of the 3D printed device, we demonstrated how the best reproducibility was obtained with the glossy device showing a 5% accuracy. The performance of the device was demonstrated by a free-flow zone electrophoresis application on micro- and nanoparticles with different dimensions, charge surfaces and fluorescent dyes by applying different separation voltages up to 55 V. Dynamic light scattering (DLS) measurements and ultraviolet−visible spectroscopy (UV−Vis) analysis were performed on particles collected at the outlets. The percentage of particles observed at each outlet was determined in order to demonstrate the capability of the micro free-flow electrophoresis (µFFE) device to work properly in dependence of the applied electric field. In conclusion, we rapid prototyped a microfluidic device by 3D printing, which ensured micro- and nanoparticle deviation and concentration in a reduced operation volume and hence suitable for biomedical as well as pharmaceutical applications.


Sign in / Sign up

Export Citation Format

Share Document