Three-Dimensional Nonlinear Numerical Analysis of Consolidation of Soft Ground Improved by Sand Columns under a Freeway Embankment in Shallow Sea: Case Study

2017 ◽  
Vol 17 (8) ◽  
pp. 05017001 ◽  
Author(s):  
Zi-Hang Dai ◽  
Bao-Lin Chen ◽  
Zhi-Zhong Qin
Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Author(s):  
Emre Bulut ◽  
Gökhan Sevilgen ◽  
Ferdi Eşiyok ◽  
Ferruh Öztürk ◽  
Tuğçe Turan Abi

Author(s):  
Leonardo Baglioni ◽  
Federico Fallavollita

AbstractThe present essay investigates the potential of generative representation applied to the study of relief perspective architectures realized in Italy between the sixteenth and seventeenth centuries. In arts, and architecture in particular, relief perspective is a three-dimensional structure able to create the illusion of great depths in small spaces. A method of investigation applied to the case study of the Avila Chapel in Santa Maria in Trastevere in Rome (Antonio Gherardi 1678) is proposed. The research methodology can be extended to other cases and is based on the use of a Relief Perspective Camera, which can create both a linear perspective and a relief perspective. Experimenting mechanically and automatically the perspective transformations from the affine space to the illusory space and vice versa has allowed us to see the case study in a different light.


2021 ◽  
Vol 1 (1) ◽  
pp. 39-47
Author(s):  
Christine Price

This paper problematises the dominance of global north perspectives in landscape architectural education, in South Africa where there are urgent calls to decolonise education and make visible indigenous and vernacular meaning-making practices. In grappling with these concerns, this research finds resonance with a multimodal social semiotic approach that acknowledges the interest, agency and resourcefulness of students as meaning-makers in both accessing and challenging dominant educational discourses. This research involves a case study of a design project in a first-year landscape architectural studio. The project requires students to choose a narrative and to represent it as a spatial model: a scaled, 3D maquette of a spatial experience that could be installed in a public park. This practitioner reflection closely analyses the spatial model of one student, Malibongwe, focusing on his interest in meaning-making; the innovative meaning-making practices and diverse resources he draws on; and his expression of spatial signifiers of the Black experiences portrayed in his narrative. This reflection shows how Malibongwe’s narrative is not only reproduced in the spatial model, it is remade: the transformation of resources into three-dimensional spatial form results in new understandings and the production of new meanings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexey A. Polilov ◽  
Anastasia A. Makarova ◽  
Song Pang ◽  
C. Shan Xu ◽  
Harald Hess

AbstractModern morphological and structural studies are coming to a new level by incorporating the latest methods of three-dimensional electron microscopy (3D-EM). One of the key problems for the wide usage of these methods is posed by difficulties with sample preparation, since the methods work poorly with heterogeneous (consisting of tissues different in structure and in chemical composition) samples and require expensive equipment and usually much time. We have developed a simple protocol allows preparing heterogeneous biological samples suitable for 3D-EM in a laboratory that has a standard supply of equipment and reagents for electron microscopy. This protocol, combined with focused ion-beam scanning electron microscopy, makes it possible to study 3D ultrastructure of complex biological samples, e.g., whole insect heads, over their entire volume at the cellular and subcellular levels. The protocol provides new opportunities for many areas of study, including connectomics.


Author(s):  
Athanasios Donas ◽  
Ioannis Famelis ◽  
Peter C Chu ◽  
George Galanis

The aim of this paper is to present an application of high-order numerical analysis methods to a simulation system that models the movement of a cylindrical-shaped object (mine, projectile, etc.) in a marine environment and in general in fluids with important applications in Naval operations. More specifically, an alternative methodology is proposed for the dynamics of the Navy’s three-dimensional mine impact burial prediction model, Impact35/vortex, based on the Dormand–Prince Runge–Kutta fifth-order and the singly diagonally implicit Runge–Kutta fifth-order methods. The main aim is to improve the time efficiency of the system, while keeping the deviation levels of the final results, derived from the standard and the proposed methodology, low.


2021 ◽  
Vol 13 (11) ◽  
pp. 6188
Author(s):  
Sungwan Son ◽  
Choon-Man Jang

For students, who spend most of their time in school classrooms, it is important to maintain indoor air quality (IAQ) to ensure a comfortable and healthy life. Recently, the ventilation performance for indoor air quality in elementary schools has emerged as an important social issue due to the increase in the number of days of continuous high concentrations of particulate matter. Three-dimensional numerical analysis has been introduced to evaluate the indoor airflow according to the installation location of return diffusers. Considering the possibility of the cross-infection of infectious diseases between students due to the direction of airflow in the classroom, the airflow angles of the average respiratory height range of elementary school students, between 1.0 and 1.5 m, are analyzed. Throughout the numerical analysis inside the classroom, it is found that the floor return system reduces the indoor horizontal airflow that causes cross-infection among students by 20% compared to the upper return systems. Air ventilation performance is also analyzed in detail using the results of numerical simulation, including streamlines, temperature and the age of air.


Sign in / Sign up

Export Citation Format

Share Document