Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology

2017 ◽  
Vol 22 (8) ◽  
pp. 04017019 ◽  
Author(s):  
Jenny Hill ◽  
Jennifer Drake ◽  
Brent Sleep ◽  
Liat Margolis
2018 ◽  
Vol 77 (12) ◽  
pp. 2834-2840 ◽  
Author(s):  
Musa Akther ◽  
Jianxun He ◽  
Angus Chu ◽  
Caterina Valeo ◽  
Usman T. Khan ◽  
...  

Abstract Multiple factors affect green roof performance and their effects might vary at different stages of operation. This paper aimed to link green roof performance to hydrologic variables (antecedent moisture condition (AMC) and rainfall intensity) and design variables (growing medium (GM) type and depth) under multiple dimensions at the early stage of operation using laboratory experiment data. The results showed that the AMC is the most influential factor of hydrologic performance, whereas the GM type appeared to primarily affect the nutrient levels of the outflow. The significant main effects of other variables and interaction effects between two variables point to challenges in green roof design.


2011 ◽  
Vol 40 (2) ◽  
pp. 175-196
Author(s):  
ERIK JONES ◽  
THERESA MILLER ◽  
JEREMY MONSMA ◽  
JILLIAN PUSZYKOWSKI ◽  
JOANNE WESTPHAL

ABSTRACT This paper describes plant species composition and coverage changes that occurred on an extensive (shallow) green roof system exposed to direct solar exposure and steep roof conditions over time. The green roof system, installed in August, 2005, involved a pre-seeded, manufactured mat product that initially was vegetated with twelve plant species. During the interim between installation and data collection for this paper, no maintenance, fertilizer, or irrigation was applied, despite the fact that observable differences in plant coverage were noted. In April, 2009, undergraduate student researchers revisited the green roof system and examined the green roof for species composition and absolute plant cover. These data were compared to a control area where solar incidence and slope were comparable to the conditions found on a flat roof system. This paper reports on the findings of this study, and offers insight to the types of modifications in extensive green roof technology that may be necessary if extensive green roof application is to be useful for steep roof conditions in cold climate environments.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1535
Author(s):  
Mallory Squier-Babcock ◽  
Cliff I. Davidson

Green roof performance reported in literature varies widely—the result of differences in green roof design and climate, as well as limitations in study design and duration. The need exists for full-scale studies under real climate conditions to inform the design, modeling, and planning of new green roof installations. The purpose of this study is to quantify hydrologic performance of a large green roof and characterize its dominant physical processes. To achieve this, a 5550 m2 extensive green roof in Syracuse, New York, designed to hold a 25.4 mm rain event, is monitored for 21 months. Over the monitoring period, the roof retains 56% of the 1062 mm of rainfall recorded. Peak runoff is reduced by an average of 65%. Eleven events exceed 20 mm and are responsible for 38% of the rainfall and 24% of the annual retention. Retention in the summer is lower than that in the fall or spring, as a result of greater rainfall intensity during the period sampled. Soil moisture during winter months remains high, reducing the ability of the roof to retain rainfall volume from new events. Comparison of seasonal data demonstrates the strong influence of rainfall intensity on runoff and the effect of initial soil moisture on event retention.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 298
Author(s):  
Anna Krawczyk ◽  
Iwona Domagała-Świątkiewicz ◽  
Agnieszka Lis-Krzyścin

Over the last decade, an increase in the use of locally available, recycled, and waste materials as growing media components have occurred in various regions of the world in extensive green roof technology. For eco-concept reasons, such a strategy appears to be appropriate, but can be problematic due to difficulties in obtaining proper parameters of growing substrate. The growing media should be properly engineered in order to enable the proper functioning of green roofs and provide suitable environment for ideal root growth. The aim of the study was to assess the utility of locally occurring waste materials for growing media composition and estimate plant- and time-dependent changes in the physico-chemical parameters of waste-based substrates in a simulated extensive green roof system during a two-year Sedum acre L. cultivation. Five different substrate compositions were prepared using silica waste, crushed brick, Ca- and Zn-aggregates, melaphyre, tuff, sand, muck soil, urban compost, spent mushroom, and coconut fibres. Optimal water capacity, particle-size distribution, pH and salts concentration were found in all substrates. A higher concentration of macronutrients (N, P, K, Mg) and trace elements (B, Cu, Fe, Mn, Zn, Cd, Ni, Pb, and Cr) was found in waste-based substrates than in the commercial medium. In comparison to the parameters determined before establish the experiment, bulk density of tested growing media decreased, except for the substrates where the source of organic matter was the rapidly mineralising spent mushroom. The organic matter content in substrates after the two-year vegetation increased in relation to the ready-made substrate, with the exception of the composition with spent mushroom. After two years of the experiment, all available macronutrients and trace elements (with the exception of mineral N, K, SO4-S, and B) concentration were higher than in 2014, while pH, salt concentration was lower. In general, plants grown in waste substrates had lower dry matter content and higher biomass. A significantly higher biomass of S. acre L. was found in the first year of the experiment. In the second year of the research, the plants grown in the commercial medium, the substrate with silica waste, and the substrate with spent mushroom produced higher biomass than in the first year. No symptoms of abnormal growth were observed, despite the higher trace element concentrations in plants collected from waste-based substrate. Waste-based growing media can be considered as a valuable root environment for S. acre L. in an extensive green roof system.


2021 ◽  
Vol 13 (6) ◽  
pp. 3078
Author(s):  
Elena Giacomello ◽  
Jacopo Gaspari

The water storage capacity of a green roof generates several benefits for the building conterminous environment. The hydrologic performance is conventionally expressed by the runoff coefficient, according to international standards and guidelines. The runoff coefficient is a dimensionless number and defines the water retention performance over a long period. At the scale of single rain events, characterized by varying intensity and duration, the reaction of the green roof is scarcely investigated. The purpose of this study is to highlight how an extensive green roof—having a supposed minimum water performance, compared to an intensive one—responds to real and repetitive rain events, simulated in a rain chamber with controlled rain and runoff data. The experiment provides, through cumulative curve graphs, the behavior of the green roof sample during four rainy days. The simulated rain events are based on a statistical study (summarized in the paper) of 25 years of rain data for a specific location in North Italy characterized by an average rain/year of 1100 mm. The results prove the active response of the substrate, although thin and mineral, and quick draining, in terms of water retention and detention during intense rain events. The study raises questions about how to better express the water performance of green roofs.


2017 ◽  
Vol 108 ◽  
pp. 194-202 ◽  
Author(s):  
Anna Krawczyk ◽  
Iwona Domagała-Świątkiewicz ◽  
Agnieszka Lis-Krzyścin

Sign in / Sign up

Export Citation Format

Share Document