Evaluation of the Hydrological Performance of Infiltration Trench with Rainfall-Watershed-Infiltration Trench Experimental Setup

2022 ◽  
Vol 27 (3) ◽  
Author(s):  
Kaan İlker Demirezen ◽  
Cevza Melek Kazezyılmaz-Alhan
Keyword(s):  
2020 ◽  
Vol 91 (7) ◽  
pp. 073103
Author(s):  
Yury V. Vishnevskiy ◽  
Sebastian Blomeyer ◽  
Christian G. Reuter ◽  
Oleg A. Pimenov ◽  
Sergey A. Shlykov

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1192
Author(s):  
Ulrich David Jentschura

We propose a method by which one could use modified antimatter gravity experiments in order to perform a high-precision test of antimatter charge neutrality. The proposal is based on the application of a strong, external, vertically oriented electric field during an antimatter free-fall gravity experiment in the gravitational field of the Earth. The proposed experimental setup has the potential to drastically improve the limits on the charge-asymmetry parameter ϵ¯q of antimatter. On the theoretical side, we analyze possibilities to describe a putative charge-asymmetry of matter and antimatter, proportional to the parameters ϵq and ϵ¯q, by Lagrangian methods. We found that such an asymmetry could be described by four-dimensional Lorentz-invariant operators that break CPT without destroying the locality of the field theory. The mechanism involves an interaction Lagrangian with field operators decomposed into particle or antiparticle field contributions. Our Lagrangian is otherwise Lorentz, as well as PT invariant. Constraints to be derived on the parameter ϵ¯q do not depend on the assumed theoretical model.


2021 ◽  
Vol 11 (6) ◽  
pp. 2495
Author(s):  
Belén Ferrer ◽  
María-Baralida Tomás ◽  
David Mas

Some materials undergo hygric expansion when soaked. In porous rocks, this effect is enhanced by the pore space, because it allows water to reach every part of its volume and to hydrate most swelling parts. In the vicinity, this enlargement has negative structural consequences as adjacent elements support some compressions or displacements. In this work, we propose a normalized cross-correlation between rock surface texture images to determine the hygric expansion of such materials. We used small porous sandstone samples (11 × 11 × 30 mm3) to measure hygric swelling. The experimental setup comprised an industrial digital camera and a telecentric objective. We took one image every 5 min for 3 h to characterize the whole swelling process. An error analysis of both the mathematical and experimental methods was performed. The results showed that the proposed methodology provided, despite some limitations, reliable hygric swelling information by a non-contact methodology with an accuracy of 1 micron and permitted the deformation in both the vertical and horizontal directions to be explored, which is an advantage over traditional linear variable displacement transformers.


Author(s):  
Yu Zhao ◽  
Ulf Panzer ◽  
Stefan Bonn ◽  
Christian F. Krebs

AbstractSingle-cell biology is transforming the ability of researchers to understand cellular signaling and identity across medical and biological disciplines. Especially for immune-mediated diseases, a single-cell look at immune cell subtypes, signaling, and activity might yield fundamental insights into the disease etiology, mechanisms, and potential therapeutic interventions. In this review, we highlight recent advances in the field of single-cell RNA profiling and their application to understand renal function in health and disease. With a focus on the immune system, in particular on T cells, we propose some key directions of understanding renal inflammation using single-cell approaches. We detail the benefits and shortcomings of the various technological approaches outlined and give advice on potential pitfalls and challenges in experimental setup and computational analysis. Finally, we conclude with a brief outlook into a promising future for single-cell technologies to elucidate kidney function.


2021 ◽  
Vol 201 ◽  
pp. 108496
Author(s):  
Mohammad Tavakkoli ◽  
Sai R. Panuganti ◽  
Yash Khemka ◽  
Humberto Valdes ◽  
Francisco M. Vargas

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1327
Author(s):  
Dwinanto Sukamto ◽  
Monica Siroux ◽  
Francois Gloriant

The building sector is the largest consumer of energy, but there are still major scientific challenges in this field. The façade, being the interface between the exterior and interior space, plays a key role in the energy efficiency of a building. In this context, this paper focuses on a ventilated bioclimatic wall for nearly zero-energy buildings (NZEB). The aim of this study is to investigate an experimental setup based on a hot box for the characterization of the thermal performances of the ventilated wall. A specific ventilated prototype and an original thermal metrology are developed. This paper presents the ventilated prototype, the experimental setup, and the experimental results on the thermal performances of the ventilated wall. The influence of the air space thickness and the air flow rate on the thermal performances of the ventilated wall is studied.


2013 ◽  
Vol 28 (S2) ◽  
pp. S481-S490
Author(s):  
Oriol Vallcorba ◽  
Anna Crespi ◽  
Jordi Rius ◽  
Carles Miravitlles

The viability of the direct-space strategy TALP (Vallcorba et al., 2012b) to solve crystal structures of molecular compounds from laboratory powder diffraction data is shown. The procedure exploits the accurate metric refined from a ‘Bragg-Brentano’ powder pattern to extract later the intensity data from a second ‘texture-free’ powder pattern with the DAJUST software (Vallcorba et al., 2012a). The experimental setup for collecting this second pattern consists of a circularly collimated X-ray beam and a 2D detector. The sample is placed between two thin Mylar® foils, which reduces or even eliminates preferred orientation. With the combination of the DAJUST and TALP software a preliminary but rigorous structural study of organic compounds can be carried out at the laboratory level. In addition, the time-consuming filling of capillaries with diameters thinner than 0.3mm is avoided.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2471 ◽  
Author(s):  
Daniel Flor ◽  
Danilo Pena ◽  
Luan Pena ◽  
Vicente A. de Sousa ◽  
Allan Martins

Vehicular acoustic noise evaluations are a concern of researchers due to health and comfort effects on humans and are fundamental for anyone interested in mitigating audio noise. This paper focuses on the evaluation of the noise level inside a vehicle by using statistical tools. First, an experimental setup was developed with microphones and a microcomputer located strategically on the car’s panel, and measurements were carried out with different conditions such as car window position, rain, traffic, and car speed. Regression analysis was performed to evaluate the similarity of the noise level from those conditions. Thus, we were able to discuss the relevance of the variables that contribute to the noise level inside a car. Finally, our results revealed that the car speed is strongly correlated to interior noise levels, suggesting the most relevant noise sources are in the vehicle itself.


Author(s):  
Pedro Coimbra ◽  
Stefania Faria ◽  
Mario Vala ◽  
Joao Felicio ◽  
Carlos Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document