Numerical Analysis of Stormwater Flow Conditions and Separation Zone at Open-Channel Junctions

2017 ◽  
Vol 143 (1) ◽  
pp. 05016009 ◽  
Author(s):  
Thewodros K. Geberemariam
2021 ◽  
Vol 33 (1) ◽  
pp. 111-119
Author(s):  
M. I. Alamayreh ◽  
A. Fenocchi ◽  
G. Petaccia ◽  
S. Sibilla ◽  
E. Persi

2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1663 ◽  
Author(s):  
Lei Jiang ◽  
Mingjun Diao ◽  
Haomiao Sun ◽  
Yu Ren

The objective of this study was to evaluate the effect of the upstream angle on flow over a trapezoidal broad-crested weir based on numerical simulations using the open-source toolbox OpenFOAM. Eight trapezoidal broad-crested weir configurations with different upstream face angles (θ = 10°, 15°, 22.5°, 30°, 45°, 60°, 75°, 90°) were investigated under free-flow conditions. The volume-of-fluid (VOF) method and two turbulence models (the standard k-ε model and the SST k-w model) were employed in the numerical simulations. The numerical results were compared with the experimental results obtained from published papers. The root mean square error (RMSE) and the mean absolute percent error (MAPE) were used to evaluate the accuracy of the numerical results. The statistical results show that RMSE and MAPE values of the standard k-ε model are 0.35–0.67% and 0.50–1.48%, respectively; the RMSE and MAPE values of the SST k-w model are 0.25–0.66% and 0.55–1.41%, respectively. Additionally, the effects of the upstream face angle on the flow features, including the discharge coefficient and the flow separation zone, were also discussed in the present study.


2019 ◽  
Vol 7 (12) ◽  
pp. 456 ◽  
Author(s):  
Woo-Dong Lee ◽  
Hyo-Jae Jo ◽  
Han-Sol Kim ◽  
Min-Jun Kang ◽  
Kwang-Hyo Jung ◽  
...  

Herein, hydraulic model experiments and numerical simulations were performed to understand the self-burial mechanism of subsea pipelines with spoilers under steady flow conditions. First, scour characteristics and self-burial functions according to the spoiler length-to-pipe diameter ratio (S/D) were investigated through hydraulic experiments. Further, the Navier–Stokes solver was verified. The experimental values of the velocity at the bottom of the pipeline with a spoiler and the pressure on the sand foundation where the pipeline rested were represented with the degree of conformity. Scour characteristics of a sand foundation were investigated from the numerical analysis results of the velocity and vorticity surrounding the pipelines with spoilers. The compilation of results from the hydraulic experiment and numerical analysis showed that the projected area increased when a spoiler was attached to the subsea pipes. This consequently increased the velocity of fluid leaving the top and bottom of the pipe, and high vorticity was formed within and above the sand foundation. This aggravated scouring at the pipe base and increased the top and bottom asymmetry of the dynamic pressure field, which developed a downward force on the pipeline. These two primary effects acting simultaneously under steady flow conditions explained the self-burial of pipelines with a spoiler attachment.


Energy ◽  
2020 ◽  
Vol 190 ◽  
pp. 116303 ◽  
Author(s):  
Sebastian Rulik ◽  
Włodzimierz Wróblewski ◽  
Mirosław Majkut ◽  
Michał Strozik ◽  
Krzysztof Rusin

1997 ◽  
Vol 50 (11S) ◽  
pp. S232-S236
Author(s):  
Alvaro Valencia

The incompressible laminar flow in a channel with a backward-facing step is studied for steady cases and for pulsating inlet flow conditions. For steady flows, the influrnce of the inlet velocity profile, the height of the step, and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsating flow. It was found with amplitude of oscillation of one by Re = 100 that the primary vortex breakdown through one pulsatile cycle and the wall shear stress in the separation zone varied markedly with pulsating inlet flow.


2003 ◽  
Author(s):  
Bassam Abu-Hijleh ◽  
Jiyuan Tu ◽  
Aleksander Subic ◽  
Huafeng Li ◽  
Katherine Ilie

The performance of a Rotor-Casing Assembly is influenced more by the internal air leakages than by any other thermo-fluid aspect of its behaviour. The pressure difference driving the air along a leakage path varies periodically and does so in a manner that may not be the same for every leakage path. So the distribution of leakage through the various leakage paths within the machine is important for the improvement of its performance. The total volume of air leakage and the distribution of the leakage among the different paths depend on the rotor-rotor and rotor-casing clearances as well as the geometry of the rotors’ lobes. Computational Fluid Dynamics (CFD) analysis was carried out using the FLUENT. Geometry definition, mesh generation, boundary and flow conditions, and solver parameters have all been investigated as the part of the numerical analysis. This analysis was conducted for static rotors at different positions. The results indicate that the size of the clearances as well as the geometry of the rotors’ lobes can have a significant effect on the total volume of the air leakage as well as the distribution of the leakage among the three main leakage paths. The results can be used to ascertain the proper levels of clearances to be used and the best rotor lobes geometry to be used for the practical reduction of air leakage.


Sign in / Sign up

Export Citation Format

Share Document