scholarly journals Variability of Mechanical Properties of Cellular Lightweight Concrete Infill and Its Effect on Seismic Safety

2021 ◽  
Vol 22 (4) ◽  
pp. 04021039
Author(s):  
Nikhil P. Zade ◽  
Avadhoot Bhosale ◽  
Prateek Kumar Dhir ◽  
Pradip Sarkar ◽  
Robin Davis
2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


2018 ◽  
Vol 250 ◽  
pp. 03002 ◽  
Author(s):  
Muhammad Sazlly Nazreen ◽  
Roslli Noor Mohamed ◽  
Mariyana Aida Ab Kadir ◽  
Nazry Azillah ◽  
Nazirah Ahmad Shukri ◽  
...  

Lightweight concrete (LWC) has been identified as an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine aggregate concrete, lightweight aggregate concrete and aerated concrete. This paper studied the characteristic of the lightweight concrete in term of mechanical properties utilizing the palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, namely as POCC100 and POCC50 where each mix utilized 100% and 50% of total replacement to fine and coarse aggregates, respectively. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural, modulus of elasticity and Poisson's ratio. From density test results, POC falls into the category of lightweight concrete with a density of 1990.33 kg/m3, which are below than normal weight concrete density. The mechanical properties test results on POCC100 and POCC50 showed that the concrete compressive strength was comparable about 85.70% and 96% compared to NC specimen, respectively. For the flexural strength, POCC50 and POCC100 were comparable about 98% and 97% to NC specimen, respectively. While splitting tensile strength of POCC50 and POCC100 was only 0.6% and 4% lower than NC specimen, respectively. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries. After undergoing various testing of concrete mechanical properties, it can be concluded that POC aggregates was compatible to be used in ligtweight concrete mix proportion.


2013 ◽  
Vol 483 ◽  
pp. 305-308
Author(s):  
Li Wen Luan ◽  
Zhong Tao

This paper mainly depends on experiment. Take theory and software analysis as supplement. Using pine and fir as test material, the quantitative analysis, using uniform design method to qualitative pine, fir wood block the relationship between mechanical properties and geometrical parameters in the case of triangle, failure characteristics through experimental phenomenon of different materials and different sizes of wood in the triangle block pressure, finally using finite element analysis software ANSYS/LS-DYNA to simulate and analyze test. By comparing the analysis result of test and software, find out the problems and corresponding correction. The final analysis laid the foundation for the whole static wood structure analysis and dynamic. To provide scientific and technical support for rural residential "seismic safety engineering", thus forming the new wooden structure node and reinforcement for clause.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Fan Wu ◽  
Qingliang Yu ◽  
Changwu Liu ◽  
H. J. H. Brouwers ◽  
Linfeng Wang ◽  
...  

AbstractThe heat-treated apricot shell can be utilized as coarse aggregates for producing sustainable bio-based lightweight concrete with good compressive strength but poor tensile strength. In order to improve the tensile properties of apricot shell concrete (ASC), the effects of polypropylene (PP) fibre, glass (G) fibre and basalt (B) fibre at various volume fractions (Vf) (0.25%, 0.5% and 0.75%) on the performance of ASC were investigated. The results indicated that the fibre type had no significant effect on the physical properties of ASC such as slump, density, water absorption and permeable porosity. However, the slump of ASC decreases with an increase in fibre content. The B fibre has a better improvement in mechanical properties than the PP fibre and G fibre thanks to the better elastic modulus and tensile strength. When the Vf was 0.5%, the compressive strength, splitting tensile strength, flexural strength and modulus of elasticity of ASC reinforced with B fibre were increased by 16.7%, 29.1%, 29.2%, and 18.1%, respectively, compared to ASC without any fibres. The magnesium sulfate attack results showed that the incorporation of the B fibre decreased the mass loss and compressive strength of ASC exposed to a MgSO4 solution for 6 months because the fibre arrested the microcracks caused by the expansive stress. It is concluded that the mechanical properties of bio-based ASC and its resistance to magnesium sulfate attack can be significantly improved by incorporating 0.5% B fibre.


2019 ◽  
Vol 945 ◽  
pp. 188-192 ◽  
Author(s):  
A.A. Pykin ◽  
E.Y. Gornostaeva ◽  
N.P. Lukutsova ◽  
J.S. Pykina

The physical and mechanical properties of lightweight constructional heat-insulating concrete (sawdust gypsum concrete) with high-strength gypsum binder, modified by food cotton microcrystalline cellulose and organic fillers of plant origin from the waste wood of coniferous and deciduous species in the form of cavitationly processed pine and birch sawdust have been studied. The dependence of the cavitation extraction time of water-soluble reducing substances (sugars) from sawdust on the strength of sawdust gypsum concrete is established. The changes in microstructure of the gypsum matrix, the mean density, bending tension strength and compression strength, the thermal conductivity coefficient of sawdust gypsum concrete on the basis of the cavitationly processed sawdust with the introduction of microcrystalline cellulose are analyzed. It is proven that microcrystalline cellulose compacts the space between the crystalline hydrates of calcium sulfate dihydrate in the gypsum matrix microstructure and improves the physical and mechanical properties of sawdust gypsum concrete.


Author(s):  
Arman Abdigaliyev ◽  
Jiong Hu

During the last decades, cellular lightweight concrete (CLC), or foamed concrete, has been experiencing greater interest in geotechnical, structural, and non-structural applications. The low density and high flowability makes it a favorable construction material in relation to handling, placing, and construction costs. However, the applications of low-density cellular concrete (LDCC), the category of CLC with a unit weight less than 50 pounds per cubic foot (801 kg/m3) and generally without fine aggregates, are limited mostly to backfill applications in geotechnical engineering. The main reason lies in the brittleness of the material and low to zero resistance to flexural loads. Fiber-reinforced LDCC may be a reasonable solution to improve mechanical properties and expand the application range of the material. This study investigated the effects of adding polypropylene and hybrid fibers on physical and mechanical properties of LDCC and the feasibility of expanding LDCC utilization to non-structural applications. Results showed that although there is a slight reduction of flowability and compressive strength, the flexural behavior of LDCC can be significantly improved with the incorporation of fibers. The flexural strength and flexural toughness of LDCC was found to increase from 26.8 pounds per square inch (psi) (0.18 MPa) to 217.5 psi (1.48 MPa), and from 5.67 lb-in. (0.64 kN-mm) to 292 lb-in. (33.0 kN-mm) respectively at a 1.0% addition rate of a fibrillated polypropylene fiber selected in this study, which makes it a feasible material for non-structural applications.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Ruhal Pervez Memon ◽  
Abdul Rahman Mohd. Sam ◽  
A. S. M. Abdul Awal ◽  
Lemar Achekzai

 Industrialization in developing countries has resulted in an increase in agricultural output and consequent accumulation of unmanageable agro wastes. Pollution arising from such wastes is a matter of concern for many developing nations. The aim of this study is to investigate the behavior of lightweight concrete and the utilization of sawdust as waste material in concrete. This paper focuses on the manufacturing of concrete which possess long duration heat transfer by using sawdust waste. In this research, cement to sawdust ratio of 1:1, 1:2 and 1:3 by volume was prepared for sawdust concrete, and the ratio of sand was kept constant that is 1. At these ratios, the mechanical and thermal properties like density, workability, strength and heat transfer were measured after, 7, 28 and 56 days of air curing. The tests results show that with the increase in the amount of sawdust, the workability, compressive strength, tensile strength and flexural strength decreased. It also resulted in reduction of heat transfer of sawdust concrete. Taking into account the overall physical and mechanical properties, sawdust concrete can be used in construction technology. 


Sign in / Sign up

Export Citation Format

Share Document