Comparative Study on Water-Hammer Method and Barometric-Pulse Method for Water Supply Pipeline Cleaning

ICPTT 2011 ◽  
2011 ◽  
Author(s):  
Ming Zhao ◽  
Xiaoxi Han ◽  
Yuequan Bao ◽  
Guoquan Wu ◽  
Congsheng Liu
Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 108 ◽  
Author(s):  
Wuyi Wan ◽  
Boran Zhang ◽  
Xiaoyi Chen

Water hammer control in water supply pipeline systems is significant for protecting pipelines from damage. The goal of this research is to investigate the effects of pumps moment of inertia design on pipeline water hammer control. Based on the method of characteristics (MOC), a numerical model is established and plenty of simulations are conducted. Through numerical analysis, it is found that increasing the pumps moment of inertia has positive effects both on water hammer control as well as preventing pumps rapid runaway speed. Considering the extra cost of space, starting energy, and materials, an evaluation methodology of efficiency on the increasing moment of inertia is proposed. It can be regarded as a reference for engineers to design the moment of inertia of pumps in water supply pipeline systems. Combined with the optimized operations of the valve behind the pumps, the pipeline systems can be better protected from accident events.


Author(s):  
Gennadiy Ol'garenko ◽  
Boris Gordon

A method of rain uniformity’s distribution was presented for different spraying devices, which were set on irrigation machines working in different mode of moving. A method for effective irrigation radius and width calculation was justified by using irrigation depth uniformity values from the area under water supply pipeline of the irrigation machine.


Author(s):  
Ahad Nejad Ebrahimi ◽  
Farnaz Nazarzadeh ◽  
Elnaz Nazarzadeh

Throughout history, gardens and garden designing has been in the attention of Persian architects who had special expertise in the construction of gardens. The appearance of Islam and allegories of paradise taken from that in Koran and Saints’ sayings gave spirituality to garden construction. Climate conditions have also had an important role in this respect but little research has been done about it and most of the investigations have referred to spiritual aspects and forms of garden. The cold and dry climate that has enveloped parts of West and North West of Iran has many gardens with different forms and functions, which have not been paid much attention to by studies done so far. The aim of this paper is to identify the features and specifications of cold and dry climate gardens with an emphasis on Tabriz’s Gardens.  Due to its natural and strategic situation, Tabriz has always been in the attention of governments throughout history; travellers and tourists have mentioned Tabriz as a city that has beautiful gardens. But, the earthquakes and wars have left no remains of those beautiful gardens. This investigation, by a comparative study of the climates in Iran and the effect of those climates on the formation of gardens and garden design, tries to identify the features and characteristics of gardens in cold and dry climate. The method of study is interpretive-historical on the basis of written documents and historic features and field study of existing gardens in this climate. The results show that, with respect to natural substrate, vegetation, the form of water supply, and the general form of the garden; gardens in dry and cold climate are different from gardens in other climates.


2022 ◽  
pp. 1420326X2110564
Author(s):  
Chuanmin Tai ◽  
Guansan Tian ◽  
Wenjun Lei

Condensation is a major issue in the safe operation of utility tunnels. To address the condensation problem, the indoor air temperature, relative humidity (RH) and surface temperature in an urban utility tunnel in Jining were continuously measured, and the condensation conditions were surveyed and analysed. The results indicated that under natural ventilation conditions, the air temperature in the comprehensive cabin varied from 23.4°C to 24.5°C, the RH fluctuated between 86.4% and 95.3%, and the corresponding air dew point temperature (DPT) remained in the range of 22.2°C–22.9°C. The surface temperature of the water supply pipeline ranged from 17.8°C to 18.5°C, which was far lower than the DPT in the tunnel, resulting in serious condensation. A water supply pipeline with an anti-condensation design was developed based on environmental test data. A 25-mm-thick rubber plastic sponge insulation layer was used to thermally insulate the water supply pipeline, preventing further dew condensation. Furthermore, mechanical ventilation had little effect on reducing the RH in the tunnel and may actually cause dew condensation; therefore, a ventilation control mode was proposed in this study. These results are expected to provide basic data for further research and reference for the safe management of utility tunnels.


2013 ◽  
Vol 316-317 ◽  
pp. 723-726
Author(s):  
Jian Qun Jiang ◽  
Xiao Wen Yao ◽  
Yi Ting Lu

Water supply pipeline system is a key issue in urban lifeline engineering, and the seismic assessment for the system damage is of significant importance. In this study, method of seismic damage assessment on underground water supply pipeline is introduced. With emphasis on the uncertainties of earthquake level, ground condition, soil-pipe interaction and capacity to resist pipe deformation in longitudinal direction, the check point method is applied to the reliability study of water pipeline, and a case study is presented to show the implementation of the proposed model.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5450
Author(s):  
Yunfei Li ◽  
Yang Zhou ◽  
Ming Fu ◽  
Fan Zhou ◽  
Zhaozhao Chi ◽  
...  

Leakage detection methods based on the analysis of leakage acoustic signals provide an effective technical approach for detecting small leaks in water supply pipelines. From a technical perspective, the study of the propagation characteristics of acoustic waves generated by the leakage in the water supply pipeline is necessary for detecting the leak location on the basis of acoustic signals. In this study, a 3D transient leakage acoustic wave propagation equation was derived by combining the principles of fluid dynamics and Lighthill acoustic analogy theory. The propagation of the leakage-induced noise in water supply pipeline was modelled theoretically. We simulated the propagation of a leakage acoustic wave under different conditions for different target scenarios encountered in actual pipeline inspections. Specifically, we analysed the effect of different factors, such as the pipe size and acoustic source characteristics, on acoustic propagation. Finally, the simulated experiments were practically performed using a self-designed simulated water supply pipeline and self-developed spherical water supply pipeline detector to validate the simulation analysis. The results of this study provide a theoretical guidance and basis for the analysis of characteristics of leakage acoustic wave signals and the recognition of leakage conditions in water supply pipelines.


2016 ◽  
Vol 4 (7) ◽  
pp. 144-149
Author(s):  
Eunchul Shin ◽  
Yura Gong ◽  
Byunghyun Ryu ◽  
Jeongku Kang

Sign in / Sign up

Export Citation Format

Share Document