Pipeline Triple-Double—Designing for Three Pipe Materials with Two Diameter Alternates

2021 ◽  
Author(s):  
Hunter Hanson
Keyword(s):  
2000 ◽  
Vol 41 (4-5) ◽  
pp. 295-300 ◽  
Author(s):  
F. Murdoch ◽  
P.G. Smith

The deposition of manganese within a biofilm growing on the surface of high-density polyethlene (HDPE) and polyvinychloride (PVC) was studied over a period of four months. The manganese rich water used in the study was inoculated with a manganese oxidising Pseudomonas spp. The level of Mn2+ in the water was monitored and was found to decrease as the biofilm formation increased. This was confirmed by energy dispersive X-ray spectroscopy (EDS) analysis which showed the detection of manganese was dependent on the presence of a biofilm. After two months a 100% removal of Mn2+ was observed in all the flasks inoculated by the Pseudomonas spp. and manganese micro-nodules, the formation of which were reported in Murdoch and Smith (1999), were being formed in large clusters across the surfaces of both the HDPE and PVC. The manganese peak area from the EDS spectrum analysis of the micro-nodules was significantly larger than was measured in the biofilm when these micro-nodules were absent. The scanning confocal laser microscope (SCLM) images of three-week samples showed high bacterial activity around areas where manganese micro-nodules were starting to form on the pipe surface.


2014 ◽  
Vol 17 (4) ◽  
pp. 973-992 ◽  
Author(s):  
Sharmin Akhtar ◽  
Bahareh Reza ◽  
Kasun Hewage ◽  
Anjuman Shahriar ◽  
Amin Zargar ◽  
...  

Author(s):  
S. Kalyanam ◽  
D.-J. Shim ◽  
P. Krishnaswamy ◽  
Y. Hioe

HDPE pipes are considered by the nuclear industry as a potential replacement option to currently employed metallic piping for service-water applications. The pipes operate under high temperatures and pressures. Hence HDPE pipes are being evaluated from perspective of design, operation, and service life requirements before routine installation in nuclear power plants. Various articles of the ASME Code Case N-755 consider the different aspects related to material performance, design, fabrication, and examination of HDPE materials. Amongst them, the material resistance (part of Article 2000) to the slow crack growth (SCG) from flaws/cracks present in HDPE pipe materials is an important concern. Experimental investigations have revealed that there is a marked difference (almost three orders less) in the time to failure when the notch/flaw is in the butt-fusion joint, as opposed to when the notch/flaw is located in the parent HDPE material. As part of ongoing studies, the material resistance to SCG was investigated earlier for unimodal materials. The current study investigated the SCG in parent and butt-fusion joint materials of bimodal HDPE (PE4710) pipe materials acquired from two different manufacturers. The various stages of the specimen deformation and failure during the creep test are characterized. Detailed photographs of the specimen side-surface were used to monitor the specimen damage accumulation and SCG. The SCG was tested using a large specimen (large creep frame) as well as using a smaller size specimen (PENT frame) and the results were compared. Further, the effect of polymer orientation or microstructure in the bimodal HDPE pipe on the SCG was studied using specimens with axial and circumferential notch orientations in the parent pipe material.


Author(s):  
Chris Alexander ◽  
Salem Talbi ◽  
Richard Kania ◽  
Jon Rickert

Abstract A study was conducted to evaluate two composite repair technologies used to reinforce severe corrosion and thru-wall leaking defects in thin-walled pipe materials; conditions where the welding of conventional Type B steel sleeves cannot be conducted. This program involved the reinforcement of simulated 85% corrosion defects in 6.625-inch × 0.157-inch, Grade X52 pipe materials subjected to cyclic pressure and burst testing. The test matrix also included repaired pipe samples with thru-wall defects that were pressurized using nitrogen gas and buried for 90 days. The program was comprehensive in that it evaluated the following elements involving a total of 81 reinforced corrosion defects. • Corrosion features with a depth of 85% of the pipe’s nominal wall thickness in thin-walled pipe material (i.e., 0.157 inches, or 4 mm). • Thru-wall defects having a diameter of 0.125 inches (3 mm). • Repairs made with leaking defects having 100 psig (690 kPa) internal pressure. • Strain gage measurement made in non-leaking 85% corrosion defects; it should be noted that the remaining “15%” ligament was 0.024 inches (0.6 mm); to the author’s knowledge, no high-pressure testing has ever been conducted on such a thin remaining wall. • Long-term 90-day test that included pressurization with nitrogen gas, followed by relatively aggressive pressure cycling up to 80% SMYS followed by burst testing. This is the first comprehensive study conducted by a major transmission pipeline operator evaluating the performance of competing composite technologies used to reinforce severe corrosion features with thru-wall defects. The reinforcement of leaks has not been accepted by regulatory bodies such as the Canadian Energy Regulator (CER), or the U.S. Pipeline and Hazardous Materials Safety Administration (PHMSA). A goal of the current study is to validate composite repair technologies as a precursor to regulatory approval. The results of this study indicate that viable composite repair technologies exist with capabilities to reinforce leaks in pipelines that experience operating conditions typical for gas transmission systems (i.e., minimal pressure cycling).


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 957
Author(s):  
Abraham C. Cullom ◽  
Rebekah L. Martin ◽  
Yang Song ◽  
Krista Williams ◽  
Amanda Williams ◽  
...  

Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper’s interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.


2015 ◽  
Vol 814 ◽  
pp. 303-312
Author(s):  
Ben Sheng Huang ◽  
Xiang Chen ◽  
Long Peng Huang

H2S corrosion has become one of the key factors that has impact seriously on the exploration and development of high-sulfur oil and gas. In order to study the change of microstructure and properties of G105 steel drill pipe in H2S environment, different concentrations of H2S (300ppm, 400ppm, 500ppm, 600ppm) were used respectively at room temperature to make corrosion immersion test on the G105 drill pipe, and then tensile test, impact test, hardness test, metallographic analysis, scanning electron microscopy (SEM) observation and EDS spectrum analysis. The results showed that in the range of H2S concentration provided in tests, pipe materials was corroded quite seriously, microstructure changed obviously, comprehensive mechanical properties decreased significantly, and the range decreased first and then increased and decreased again. The type of fracture is classified as the pore ductile fracture, some of them appear prospective cleavage characteristics, and, fracture place exist severe solute partial clustering phenomenon. In addition, high concentration of Sulfur was found in impact fracture surface. The results would provide a reference for our understanding of the corrosion behavior of the drill pipe materials in H2S environment and the development of new anti-corrosion materials drill pipe.


Sign in / Sign up

Export Citation Format

Share Document