Studies the Properties of Polyaspartic Polyurea Coated Concrete under Coaction of Salt Fog and Freeze-Thaw

2012 ◽  
Vol 455-456 ◽  
pp. 781-785
Author(s):  
Ping Lu ◽  
Xin Mao Li ◽  
Xue Qiang Ma ◽  
Wei Bo Huang

. This paper mainly studied the properties of PAE polyurea coated concrete under coactions of salt fog and freeze-thaw. After exposed salt fog conditions for 200d, T3, B2, F2 and TM four coated concrete relative dynamic elastic modulus have small changes, but different coated concrete variation amplitude is different. T3 coated concrete after 100 times of freeze-thaw cycle the relative dynamic elastic modulus began to drop, 200 times freeze-thaw cycle ends, relative dynamic elastic modulus variation is the largest, decrease rate is 95%, TM concrete during 200 times freeze-thaw cycle, relative dynamic elastic modulus almost no change, B2 concrete and F2 concrete the extent of change between coating T3 and TM. After 300 times the freeze-thaw cycle coated concrete didn't appear freeze-thaw damage phenomenon. Four kinds of coating concrete relative dynamic elastic modulus variation by large to small order: T3 coated concrete > B2 coated concrete >F2 coated concrete > TM coated concrete, concrete with the same 200d rule. Frost resistance order, by contrast, TM coated concrete > B2 coated concrete > F2 coated concrete > T3 coated concrete.

2012 ◽  
Vol 174-177 ◽  
pp. 721-725 ◽  
Author(s):  
Ming Bao Gao ◽  
Yan Ru Zhao ◽  
Xiao Yan He

With the fast freeze-thaw test method, the c50 steel fiber self-compacting concrete was carried out 300 tests of freeze-thaw cycle. In the process of freeze-thaw cycles, it determined by the quality of the concrete specimen, dynamic elastic modulus and strength, and analyzed the steel fibers and their different contents on frost resistance of self-compacting concrete impact. The results showed that: steel fiber self-compacting concrete in freeze-thaw cycle can play constrained role in the quality loss, dynamic elastic modulus and intensity, and can significantly improve the self-compacting concrete frost resistance. Within a certain range, the more steel fiber, the stronger of frost resistance.


2011 ◽  
Vol 71-78 ◽  
pp. 1036-1039
Author(s):  
Gui Feng Liu ◽  
Zheng Fa Chen ◽  
Xue Xing Chen

Although many people discussed the strength and durability of concrete with natural sand in severe environment, few people investigated the mechanics performance of concrete with manufactured-sand under condition of freeze-thaw cycle, at present. Experimental studies on C30 concrete with manufactured-sand were carried out under condition of freeze-thaw cycle, which based on the testing of raw material performance and concrete mix ration, in this paper. Comparative studies on the changing laws of the mass, strength and the relative dynamic elastic modulus of concrete were developed in three cases which were freeze-thaw cycle, freeze-thaw cycle and acid corrosion and freeze-thaw cycle and alkali corrosion. The test results showed that the mass, strength and the relative dynamic elastic modulus of concrete with manufactured-sand decreased evidently with the increasing of times of freeze-thaw cycle. The durability of acid and alkali-resistant of concrete with manufactured-sand was also remarkably weakened due to the action of freeze-thaw cycle. The capability of acid and alkali-resistant of the concrete was decreased with the increasing of times of freeze-thaw cycle and the anti-acid capability was decreased more seriously.


2021 ◽  
Vol 233 ◽  
pp. 01011
Author(s):  
Xin jian Lv ◽  
Lei Yu ◽  
Ming ming Chai

In order to find the declay law of mechanical property and the performance difference after salty water and fresh water freeze-thaw cycle, freeze-thaw cycle environments under the salty water and fresh water are simulated. The compressive strength, dynamic elastic modulus and the mass lost are tested. The pore structure parameters are also tested by MIP. Plot the pore diameter distribution curve. The result shows that the compressive strength and dynamic elastic modulus are all decreased. The degree of these two properties decreasing under salty water freeze and thaw recycle is more than the one under fresh water. The parameters of porosity and critical pore diameter become larger. The amount of pores whose diameter is between 100nm and 1000nm increase. The amount of pores whose diameter is under 100nm decrease. The deteriorate degree of pore structure is deeper in salty water than in fresh water.


2011 ◽  
Vol 71-78 ◽  
pp. 4361-4364 ◽  
Author(s):  
Xiao Yan Zhang ◽  
Xin Xin Ding ◽  
Shun Bo Zhao ◽  
Zhan Fang Ge

Experiments were conducted to study the effects of source rock state and stone powder on freeze-thaw resistance of concrete with proto-machine-made sand, the strength grade of concrete was C50, the source rock states were gravel and crushed stone, the contents of stone powder in sand were 5%, 9% and 13% respectively. The values of relative dynamic elastic modulus and mass of concrete at different freeze-thaw cycle times were measured, the reduction of relative dynamic elastic modulus and mass loss were calculated to evaluate the freeze-thaw resistance of concrete. The results show that freeze-thaw resistances are controlled by the reduction of relative dynamic elastic modulus of concrete, which are good of concrete with proto-machine-made sand of gravel and crushed stone, and increases with the increasing content of stone powder in sand made of gravel. The reasons leading to difference of freeze-thaw resistance of concrete with sand made of gravel and crushed stone are discussed.


2012 ◽  
Vol 476-478 ◽  
pp. 1661-1664
Author(s):  
Jun Fang Huo ◽  
Jian Jun Chu ◽  
Hui Yang

Different amount of pumice were used to replace gravel to make mixed aggregate concrete, the fast freeze-thaw cycle test were conducted and the influence of pumice rate substitution to the frost resistance properties of concrete were studied.The mass loss rate, strength loss and relative dynamic elastic modulus were regarded as the evaluation index of frost resistance properties of concrete. Results showed that the mass loss rate and strength loss rate gradually decreased and the relative dynamic elastic modulus gradually increased with the increase of pumice rate, the mass loss rate, strength loss rate and the relative dynamic elastic modulus gradually decreased with the increase of freeze-thaw cycles. Polypropylene fibers could reduce the strength loss rate, improved the relative dynamic elastic modulus, but had little effect to improve the mass loss. Through the frost resistance, the frost resistance of concrete improved with the increase of pumice content, at the same time, polypropylene fiber also could improve the frost resistance of concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yushi Liu ◽  
Xiaoming Zhou ◽  
Chengbo Lv ◽  
Yingzi Yang ◽  
Tianan Liu

Fly ash (FA) has been an important ingredient for engineered cementitious composite (ECC) with excellent tensile strain capacity and multiple cracking. Unfortunately, the frost resistance of ECC with high-volume FA has always been a problem. This paper discusses the influence of silica fume (SF) and ground-granulated blast-furnace slag (GGBS) on the frost resistance of ECC with high volume of FA. Four ECC mixtures, ECC (50% FA), ECC (70% FA), ECC (30% FA + 40% SL), and ECC (65% FA + 5% SF), are evaluated by freezing-thawing cycles up to 200 cycles in tap water and sodium chloride solution. The result shows the relative dynamic elastic modulus and mass loss of ECC in sodium chloride solution by freeze-thaw cycles are larger than those in tap water by freeze-thaw cycles. Moreover, the relative dynamic elastic modulus and mass loss of ECC by freeze-thaw cycles increase with FA content increasing. However, the ECC (30% FA + 40% SL) shows a lower relative dynamic elastic modulus and mass loss, but its deflection upon four-point bending test is relatively smaller before and after freeze-thaw cycles. By contrast, the ECC (65% FA + 5% SF) exhibits a significant deflection increase with higher first cracking load, and the toughness increases sharply after freeze-thaw cycles, meaning ECC has good toughness property.


2010 ◽  
Vol 168-170 ◽  
pp. 1010-1015 ◽  
Author(s):  
Wei Bo Huang ◽  
Ping Lu ◽  
Jing Zhang ◽  
Xin Mao Li

Coating protection becomes the primary and available method for the protection of marine concrete. Aliphatic polyurea is a new genre of polyurea. In the present study, the frost resistance property and adhesion property of 2 different aliphatic polyurea coated concretes under salt fog exposure were studied for the first time. The surface morphology and molecular structure of the coating under the salt fog exposure were investigated through SEM and FTIR. The investigations on the influence of the salt fog exposure to the PAE-t-HDI prepolymer-D2000H65 aliphatic polyurea (T3) coated concrete and T3 finishing coat/ MDI emulsion primer aliphatic polyurea (TM) coated concrete reported that after 300 days salt fog exposure, the relative dynamic elastic modulus of T3 and TM coated concrete were more than 85%, and their wet adhesion were 1.0 N/mm and 2.5N/mm respectively. SEM and FTIR researches showed that no obvious changes were observed in the surface morphology and structure of the coating after 200 days salt fog exposure. The results indicate that aliphatic polyurea coated concretes have favorable salt fog resistance, and are suitable for applying in marine concrete structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingsong Pu ◽  
Junhong Huang ◽  
Fuling Zeng ◽  
Yi Luo ◽  
Xinping Li ◽  
...  

This study is based on the tunnel-face slope engineering of Dongfeng tunnel in Shanxi section of China’s Shuozhou-Huanghua Railway. The sandstone specimens in the perennial freeze-thaw zone of the slope were collected to carry out freeze-thaw cycle static physical mechanics test and split Hopkinson pressure bar (SHPB) dynamic mechanical test. Thus, the damage process of sandstone under freeze-thaw cycle and impact load is studied. Also, the dynamic compressive strength and dynamic elastic modulus of sandstone are analysed under different loading strain rates and freeze-thaw cycle based on LS-DYNA, a dynamic finite element program. The results showed that the dynamic compressive strength of sandstone subjected to multiple freeze-thaw cycles under 0.04 MPa air pressure has a greater damage ratio than that under 0.055 MPa and 0.07 MPa air pressure, which was more likely to cause damage to slope sandstone than in actual engineering; the dynamic compressive strength and elastic modulus of sandstone decrease greatly within a certain range of freeze-thaw cycles and loading strain rate, leading to significant deterioration. When the freeze-thaw cycle exceeded 200 times and the strain rate was greater than 200 s−1, the physical and mechanical properties of sandstone gradually tended to be stable.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Bin Chen ◽  
Jun Wang

A freeze-thaw resistance is an important indicator of the durability of alkali-activated slag concrete, which causes structural failure when the performance is low, especially in severely cold areas. In this study, solid sodium aluminate and sodium silicate were used as composite alkaline activators, while slag was used as the raw material to prepare alkali-activated slag concrete, whose freeze-thaw resistance, as well as that of ordinary cement concrete, was experimentally studied by varying the freeze-thaw cycles. The effects of the mass, compressive strength, and dynamic elastic modulus of the sample were investigated by considering the influence of different water-to-slag ratios and slag contents, while the damage variables and model were also analyzed. The results showed that alkali-activated slag concrete had an excellent freeze-thaw resistance, which was significantly affected by the water-to-slag ratio and compressive strength; specifically, the higher the water-to-slag ratio, the lower the freeze-thaw resistance, and the higher the compressive strength, the better the freeze-thaw resistance. The freeze-thaw durability, microstructure, and damage mechanism were studied via microscopic analysis. When analyzed via the microstructure test, crack pores and microcracks with narrow spaces and large surface areas were generated under freeze-thaw damage conditions, but the dense hydration structure and high-bonding-strength hydration products led to a better freeze-thaw resistance. The damage model was established using compressive strength and relative dynamic elastic modulus as damage variables, and the attenuation exponential and accumulative damage power function model had a high accuracy, which could better reflect the freeze-thaw damage law and damage degree and predict the lifetime of alkali-activated slag concrete.


2012 ◽  
Vol 509 ◽  
pp. 82-87
Author(s):  
Jin Bang Wang ◽  
Zong Hui Zhou

The recycled concrete was prepared by using the high-strength artificial aggregates. This kind of concrete can be completely regenerated to be cement, and the recycling utilization of the concrete can also be truly realized. The frost resistance and influencing factors of the recycled concrete were studied. The results show that the mechanical performance and frost resistance of artificial aggregates recycled concrete are better than those of the ordinary concrete under the same water/cement ratio condition. When the water/cement ratio is 0.40, the relative dynamic elastic modulus, weight loss and frost durability factor of the recycled concrete are 98.7%, 0.5% and 65.8 after 200 times freeze-thaw cycles. When the fly ash and silica fume were added into the recycled concrete, the frost resistance can be improved. The optimal amounts of fly ash and silica fume are 30% and 15% of cement by weight, respectively. The recycled concrete was prepared with the optimal fly ash and silica fume content, respectively. After 200 times freeze-thaw cycles, the relative dynamic elastic modulus of the recycled concrete are 99.1% and 99.2%, and the weight losses of the recycled concrete are 0.4% and 0.3%, and antifreeze durability coefficient of the recycled concrete are 66.07 and 66.13. Therefore, the recycled concrete with silica fume has better frost resistance performance than that with fly ash as admixture.


Sign in / Sign up

Export Citation Format

Share Document