Discussion of “Design for Differential Movement in Brick Walls”

1976 ◽  
Vol 102 (9) ◽  
pp. 1957-1959
Author(s):  
Narayanan Subramanian
1957 ◽  
Vol 189 (1) ◽  
pp. 91-97 ◽  
Author(s):  
R. H. Wasserman ◽  
C. L. Comar ◽  
M. M. Nold ◽  
F. W. Lengemann

The comparative metabolism of calcium and strontium during fetal development was investigated in rats and rabbits using double tracer techniques. In general, the placental transfer from dam to fetus of strontium was about one-half that of calcium; the site of discrimination was the placental barrier. The major discrimination occurred in movement of Ca* and Sr* from dam to fetus, with little or no differential movement from fetus to dam. Under steady state conditions in the rat the relative Sr*/Ca* ratios in the fetus, maternal skeleton and diet were 0.17, 0.28 and 1, respectively. The over-all discrimination of 0.17 between fetus and diet resulted from absorption (0.42), urinary excretion (0.63) and placental transfer (0.65). In the rat it was estimated that 92% of the fetal calcium had originated from the maternal diet. In the rabbit during late pregnancy, it was determined that about 24 mg of calcium/fetus/day moved across the placenta as compared with a need of about 13 mg for fetal development.


2019 ◽  
Vol 18 ◽  
pp. e00641 ◽  
Author(s):  
Bao-dong Yuan ◽  
Sheng-bin Xie ◽  
Bin Liu ◽  
Dan-dan Xue ◽  
Da-ming Sun

1983 ◽  
Vol 4 ◽  
pp. 271-276 ◽  
Author(s):  
R. A. Sommerfeld ◽  
H. Gubler

Analyses of several years of data show that acoustic emission activity is greater from unstable snowpacks than from stable snowpacks. Two types of signals have been identified: type I spikes and type II long-term elevation of the noise level. It is thought that the type I signals originate from macroscopic cracks. The type II signals may originate from differential movement on shearing surfaces, but this is less certain. Increased noise levels of both types correlate well with slope instability, when the slope stability is known. In some climates the limited range of signal detection might be a significant problem. A foam-mounted geophone set into the snow near active layers appears to be the best sensor available at present.


1964 ◽  
Vol S7-VI (4) ◽  
pp. 545-553 ◽  
Author(s):  
Fernand Touraine

Abstract The Sainte-Victoire mountain in southern France has been considered the overturned southern limb of the Vauvenargues anticline, but the structure east of the Delubre fault is complicated by an oblique fold. The western margin is concealed by transgressive Tortonian (middle Miocene) beds covering the plateau of Beaumettes. The anticline probably is upper Cretaceous. Folding was renewed in the upper Lutetian (middle Eocene), and resulted in overturning and thrust faulting of the south limb. Subsequent normal faulting compartmented the mass, resulting in selective differential movement of blocks as horsts and grabens. The term piano keys structure is given to this type of structure.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000008-000016 ◽  
Author(s):  
Antonio La Manna ◽  
K. J. Rebibis ◽  
C. Gerets ◽  
E. Beyne

A key element for improving 3D stacking reliability is the choice of the right Underfill materials. The Underfill is a specialized adhesive that has the main purposes of locking top and bottom dies; it must fill the gap between bumps and between dies, while reducing the differential movement that would occur during thermal cycling. Traditional underfill processes are based on local dispensing after solder bump reflow (Capillary dispensing), or before flip chip operation with no need of reflow (No Flow Underfill, NUF). In case of 3D stacking, such processes present some limitations: need of a dispensing area (die size increase); material flowing (spacing between dies) and cost (low throughput). After an introduction on typical underfill applications like die-to-package and die-die assembly, we report the work done to assess the properties of several Wafer Applied Underfill (WAUF) materials and their integration in 3D stacking. These materials have been initially applied on silicon wafers in order to assess the minimum achievable thickness and the material uniformity. The wafers have been coated by using different methods: spin coating and film lamination. After this initial assessment, the most promising materials have been used for 3D stacking. The test vehicle used has Cu/Sn μbumps with a pitch of 40μm. The quality of the materials is judged by electrical test, SAM (Surface Acoustic Microscope) and X-SEM (Scanning Electron Microscope).


Author(s):  
Kayleigh M. Harvey ◽  
Sarah C. Penniston‐Dorland ◽  
Matthew J. Kohn ◽  
Philip M. Piccoli

1980 ◽  
Vol 25 (93) ◽  
pp. 492-497 ◽  
Author(s):  
W. C. Mahaney

AbstractRock glaciers in Teleki Valley on Mount Kenya exist above 4 000 m below steep valley walls where they are supplied with debris from avalanche couloirs. These valley-side rock glaciers consist of three or four lobes of rubble bounded by transverse furrows resulting from differential movement. No ice cores were observed in these rubble sheets, but “drunken forest” stands of Senecio keniodendron indicate the probable presence of interstitial ice resulting either from the metamorphism of snow buried under rockfall and slide-rock debris, or from freezing of water beneath the rock mantle. A geological survey of Mount Kenya in 1976 revealed that rock glaciers are anomalous in the Mount Kenya Afroalpine zone above 3 300 m. Analysis of weathering rinds indicates that several rock-glacier lobes were built up over a short interval of time at or near the end of the last glacial maximum (Würm). Oversteepened fronts on the westernmost lobes may have resulted from re-activation coinciding with the advance of glaciers during late Holocene time (<1 000 B.P.). Soils mantle 20% of the rock-glacier surface and have morphological characteristics comparable with soils forming on moraines of late Würm age in upper Teleki, Hausberg, and Mackinder Valleys.


Sign in / Sign up

Export Citation Format

Share Document