Beam emittance measurements of transformer coupled plasma ion source for focused ion beam

2004 ◽  
Vol 75 (5) ◽  
pp. 1681-1683 ◽  
Author(s):  
Yoon Jae Kim ◽  
I. S. Hong ◽  
H. S. Kim ◽  
Y. S. Hwang
Author(s):  
Paul Tesch ◽  
Noel Smith ◽  
Noel Martin ◽  
Doug Kinion

Abstract Conventional focused ion beams (FIB) employing liquid metal ion sources (LMIS) are used to create site specific cross-sections for viewing subsurface features and performing 3D metrology on subsurface structure. Emerging applications incorporate novel materials as well as large structures that interface to decreasing IC dimensions and often require destructive physical analysis. This paper describes a novel instrument in which an inductively coupled plasma ion source is integrated onto a conventional FIB column. It compares this instrument to the existing LMIS FIBs and shows examples that illustrate the capabilities of this tool. This instrument retains the benefits of the conventional LMIS FIB such as high placement accuracy and the ability to immediately obtain high resolution images of the cross-section face without having to transfer it to another tool. It is capable of creating large cross-sections from 10 microns to 1mm in size at about 100 times faster than a conventional FIB.


Author(s):  
Valery Ray ◽  
Josef V. Oboňa ◽  
Sharang Sharang ◽  
Lolita Rotkina ◽  
Eddie Chang ◽  
...  

Abstract Despite commercial availability of a number of gas-enhanced chemical etches for faster removal of the material, there is still lack of understanding about how to take into account ion implantation and the structural damage by the primary ion beam during focused ion beam gas-assisted etching (FIB GAE). This paper describes the attempt to apply simplified beam reconstruction technique to characterize FIB GAE within single beam width and to evaluate the parameters critical for editing features with the dimensions close to the effective ion beam diameter. The approach is based on reverse-simulation methodology of ion beam current profile reconstruction. Enhancement of silicon dioxide etching with xenon difluoride precursor in xenon FIB with inductively coupled plasma ion source appears to be high and relatively uniform over the cross-section of the xenon beam, making xenon FIB potentially suitable platform for selective removal of materials in circuit edit application.


2014 ◽  
Vol 27 ◽  
pp. 1460145 ◽  
Author(s):  
ALBERTO ANDRIGHETTO ◽  
MATTIA MANZOLARO ◽  
STEFANO CORRADETTI ◽  
DANIELE SCARPA ◽  
JESU VASQUEZ ◽  
...  

The SPES project at Laboratori di Legnaro of INFN (Italy) is concentrating on the production of neutron-rich radioactive nuclei for nuclear physics experiments using uranium fission at a rate of 1013 fission/s. The emphasis on neutron-rich isotopes is justified by the fact that this vast territory has been little explored. The Radioactive Ion Beam (RIB) will be produced by the ISOL technique using proton induced fission on a direct target of UCx. The most critical element of the SPES project is the Multi-Foil Direct Target. Up to the present time, the proposed target represents an innovation in terms of its capability to sustain the primary beam power. This talk will present the status of the project financed by INFN, which is actually in the construction phase at Legnaro. In particular, developments related to the target and the ion-source activities using the surface ion source, plasma ion source, and laser ion source techniques will be reported.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


Sign in / Sign up

Export Citation Format

Share Document