Effect of Relaxation‐Time‐Dependent Activation Energy and Temperature Change on Relaxation Spectra

1962 ◽  
Vol 33 (2) ◽  
pp. 755-756 ◽  
Author(s):  
B. Albrecht
1977 ◽  
Vol 55 (13) ◽  
pp. 2517-2522 ◽  
Author(s):  
D. Ceccaldi

A general kinetic theory is used to explain the shapes of photoionized sample luminescence curves perturbed by thermal jumps (Δ ∼ 1 K, rise time ∼ 1 s). The samples studied are photoactivated organic vitreous solutions of TMPD/MCH 10−3 M and TMPD/3-MP 10−3 M. The experiments are performed within a temperature range (63–91 K) which includes the glass transition temperature Tg. It is shown that there is a slow diffusion of the trapped electrons towards the cation and competition between thermal detrapping and tunneling. The tunneling/thermal detrapping ratio Y is not time dependent during an isothermal luminescence and is only slowly temperature dependent if T ≤ Ty. Ty is very close to Tg. For T > Ty, Y decreases rapidly with T. The activation energy for thermal detrapping shows a maximum when the temperature reaches [Formula: see text] The glass transition temperature Tg may therefore be defined empirically as:[Formula: see text]Finally we obtain a glassy matrix relaxation time, τ, which decreases with T.


1995 ◽  
Vol 97-98 ◽  
pp. 97-102 ◽  
Author(s):  
Václav Ocelík ◽  
Kornel Csach ◽  
A. Kasardová ◽  
Jozef Miškuf ◽  
Vladimir Z. Bengus ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 216-229
Author(s):  
Hussan Zeb ◽  
Hafiz Abdul Wahab ◽  
Umar Khan

In this work we demonstrated the impacts of zero mass flux in Powell-Eyring fluid over time dependent stretching sheet. We analyzed the Arrhenius activation energy in heat transfer with momentum and thermal slip boundary condition. The governing model is very complex to solve it directly therefore we transform these governed model into a coupled nonlinear ODEs via similarity transformation. After that, we solve these ODEs by using numerica method so calledshooting technique with RK-technique. The characteristics of different beneficial physical parameters on momentum, energy and concentration fields are represented through graphs. We concluded in this work the arising or reducing in the velocity, temperature and concentration fields for the existence of physical parameters. The impact of physical quantities namely skin fraction (Cf), Nusselt (Nux) and Sherwood (Shx) numbers are calculated numerically via tables. In this paper we concluded that the decreases occurring in velocity field for higher values of (M) (H) and (β). Moreover the characteristics of concentration Φ(ζ), temperature θ(ζ) and velocity f′(ζ) gradients are presented for important physical parameters see in detailed Result and discussion section.


Author(s):  
Yingxin Gao ◽  
Alan S. Wineman ◽  
Anthony M. Waas

There is experimental evidence to suggest that extensible connective tissues are mechanically time-dependent. In view of this, the mechanics of time-dependent lateral stress transfer in skeletal muscle is investigated by employing a viscoelastic shear lag model for the transfer of tensile stress between muscle fibres and the surrounding extracellular matrix (ECM) by means of shear stresses at the interface between the muscle fibre and the ECM. The model allows for both mechanical strains in the muscle as well as the strain owing to muscle contraction. Both the ECM and the muscle fibre are modelled as viscoelastic solids. As a result, time-dependent lateral stress transfer can be studied under a variety of loading and muscle stimulation conditions. The results show that the larger the muscle fibre creep time relative to the ECM relaxation time, the longer it takes for the muscle fibre stress to relax. It also shows that the response of the muscle–ECM composite system also depends on the characteristic time of a strain history relative to the characteristic relaxation time of the ECM. The results from the present model provide significant insight into the role of the parameters that characterize the response of the muscle composite system.


Sign in / Sign up

Export Citation Format

Share Document