Calculation Of The Damping Constant (Fwhm), The Relaxation Time, And The Activation Energy As A Function Of Temperature For Dmacd(N3)3

2021 ◽  
pp. 130901
Author(s):  
A. Kurt
1995 ◽  
Vol 97-98 ◽  
pp. 97-102 ◽  
Author(s):  
Václav Ocelík ◽  
Kornel Csach ◽  
A. Kasardová ◽  
Jozef Miškuf ◽  
Vladimir Z. Bengus ◽  
...  

1983 ◽  
Vol 38 (5) ◽  
pp. 593-594 ◽  
Author(s):  
W. D. Basler ◽  
I. V. Murin ◽  
S. V. Chernov

The diffusion of fluorine in KSn2F5 has been studied by T1 and T2 relaxation time measurements of 19F NMR (200-500 K) and pulsed magnetic Field gradient tech­niques (390-480 K). Near 423 K a sharp transition into the superionic state has been found, the fluorine diffusion increasing by a factor of 4 within a range of 3 K. Conduc­tivity measurements only show a change in the activation energy.


1993 ◽  
Vol 321 ◽  
Author(s):  
T. Akai ◽  
M. Yamashita ◽  
H. Yamanaka ◽  
H. Wakabayashi

ABSTRACTThe dynamic structure of xLi2S-Ga2S3-6GeS2 (x=4 and 6) glasses has been investigated by 7Li nuclear magnetic resonance. In two samples similar values of spin-lattice relaxation time (T1) were obtained. The relaxation mechanism at 20MHz and 78MHz is therefore attributed to the local motion of lithium ions. In the glass corresponding to x=6, which shows higher conductivity, the slow motion of ions showing an activation energy of 24.3kJ/Mol has been detected by the spin-lattice relaxation time in the rotating frame (T1p). This value is comparable to the activation energy determined by the conductivity. The existence of this mode is supported by the motional narrowing of the line width which is sensitive to the motion less than 10kHz.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kriti Ranjan Sahu ◽  
Udayan De

Dielectric materials are needed in many electrical and electronic applications. So, basic characterizations need to be done for all dielectrics. PbNb2O6 (PN) is ferroelectric and piezoelectric only in its orthorhombic phase, with potential high temperature applications. So, its rhombohedral phase, frequently formed as an undesirable impurity in the preparation of orthorhombic PN, has been ignored with respect to possible dielectric characterizations. Here, essentially single phase rhombohedral PN has been prepared, checking structure from XRD Rietveld Analysis, and the real and imaginary parts of permittivity measured in an Impedance Spectrometer (IS) up to ~700∘C and over 20 Hz to 5.5 MHz range, for heating and some cooling runs. Variations, with temperature, of relaxation time constant (τ), AC and DC conductivity, bulk resistance, activation energy and capacitance have been explored from our IS data.


2010 ◽  
Vol 425 ◽  
pp. 263-270 ◽  
Author(s):  
Paolo Deodati ◽  
Riccardo Donnini ◽  
Saulius Kaciulis ◽  
Alessio Mezzi ◽  
Roberto Montanari ◽  
...  

The composite, consisting of Ti6Al4V matrix reinforced by unidirectional SiC fibres (SCS-6), has been investigated by mechanical spectroscopy at temperatures up to 1,173 K. For comparison, the same experiments have been performed on the corresponding monolithic alloy. The internal friction (IF) spectrum of the composite exhibits a new relaxation peak superimposed to an exponentially increasing background. This peak, which is not present in the monolithic alloy, has an activation energy H = 186 kJ mol-1 and a relaxation time 0 = 2.3 x 10-15 s. The phenomenon has been attributed to a reorientation of interstitial-substitutional pairs in the  phase of Ti6Al4V matrix around the fibres. This explanation is supported by the results of micro-chemical characterization carried out by X-ray photoelectron spectroscopy (XPS) combined with Ar ion sputtering.


1996 ◽  
Vol 420 ◽  
Author(s):  
D. Quicker ◽  
J. Kakalios

AbstractThe slow relaxation of the persistent photoconductivity (PPC) effect in sulfur-doped hydrogenated amorphous silicon (a-Si:H) has been measured as a function of temperature and illumination time. The relaxation is found to be thermally activated, with an activation energy which varies with sulfur concentration, while illuminating the film for a longer time leads to a longer relaxation time. A correlation is observed between changes of the photoconductivity during illumination and the magnitude of the PPC effect following illumination. These effects are also observed in compensated a-Si:H, suggesting that the mechanism for the PPC effect is the same in both sulfur-doped a-Si:H and compensated a-Si:H. The presence of donor and compensating acceptor states in sulfur-doped a-Si:H could arise from valence alternation pair sulfur atom defects.


1990 ◽  
Vol 209 ◽  
Author(s):  
J. R. Cost ◽  
P. E. Armstrong ◽  
R. B. Poeppel ◽  
J. T. Stanley

ABSTRACTIsothermal elastic after-effect measurements to obtain relaxation times for the stress-induced motion of oxygen in YBa2Cu3O7−δ have been made from 50°C to 110°C. These results extend our previous internal friction measurements of the same oxygen relaxation to lower temperatures. The combined results, which cover nine orders of magnitude in relaxation time, show a classical Arrhenius temperature dependence, activation energy Q−1.13±0.01 eV and attempt frequency τ0−1.6×10−13 s (log τ0−.12.79±0.13). The mechanism of the relaxation is considered to be stress-induced ordering of oxygen atoms on theCuO basal plane. Diffusivities obtained from these results are compared with those from tracer diffusion of oxygen.


2001 ◽  
Vol 16 (8) ◽  
pp. 2399-2407 ◽  
Author(s):  
S. O. Kasap ◽  
D. Tonchev

We have studied the glass transition behavior of vitreous As2Se3 by carrying out temperature-modulated differential scanning calorimetry (TMDSC) and conventional differential scanning calorimetry (DSC) experiments to measure the glass transition temperature Tg. In TMDSC experiments we have examined the reversing heat flow (RHF), that is the complex heat capacity CP in the glass transition region as the glass is cooled from a temperature above the glass transition temperature (from a liquidlike state) and also as the glass is heated starting from room temperature (from a solidlike state). The RHF, or CP versus T, in TMDSC changes sigmoidally through the glass transition region without evincing an enthalpic peak which is one of its distinct advantages for studying the glass transformations. The Tg measurements by TMDSC were unaffected by the amplitude of the temperature modulation. We have determined apparent activation energies by using Tg-shift methods based on the Tg-shift with the frequency (ω) of temperature modulation in the TMDSC mode and Tg-shift with heating and cooling rates, r and q, respectively, in the DSC mode. It is shown that the apparent activation energies ∆h* obtained from ln ω versus 1/Tg and ln q versus 1/Tg plots are not the same, but nonetheless, they are approximately the same as the apparent activation energy ∆hn of the viscosity over the same temperature range where the empirical Vogel expression of Henderson and Ast, η = 12.9 exp[2940/(T - 335)], was used for the viscosity. The latter observation is in agreement with the assertion that the structural relaxation time Ʈ is proportional to the viscosity h. The apparent activation energy ∆hr obtained from the ln r versus 1/Tg plot during heating DSC scans is lower than ∆h* observed during cooling scans. The results are discussed in terms of a phenomenological Narayanaswamy type relaxation time. It was observed that Tg obtained from TMDSC cooling experiments did not depend on the underlying cooling rate for q ≤ 1 °C min-1; and for temperature amplitudes 0.5–5 °C. The transition due to the temperature modulation was well separated from the transition due to the underlying cooling rate. Further, the apparent activation energies obtained from ln ω versus 1/Tg during cooling and heating scans for q and r ≤ 1 °C min−1 are approximately the same as expected from Hutchison's calculations using a single relaxation time model of TMDSC experiments.


Sign in / Sign up

Export Citation Format

Share Document