The thermodynamic properties of diatomic molecules at elevated temperatures: Role of continuum and metastable states

1982 ◽  
Vol 77 (12) ◽  
pp. 6162-6176 ◽  
Author(s):  
Frederick H. Mies ◽  
Paul S. Julienne
2010 ◽  
Vol 8 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh

AbstractIn this paper we focus on the elastic and thermodynamic properties of the B1 phase of CaO by using the modified TBP model, including the role of temperature. We have successfully obtained the phase transition pressure and volume change at different temperatures. In addition elastic constants and bulk modulus of B1 phase of CaO at different temperatures are discussed. Our results are comparable with the previous ones at high temperatures and pressures. The thermodynamical properties of the B1 phase of CaO are also predicted.


2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.


2009 ◽  
Vol 66 (7) ◽  
pp. 1515-1519 ◽  
Author(s):  
Suchana Chavanich ◽  
Voranop Viyakarn ◽  
Thepsuda Loyjiw ◽  
Priyapat Pattaratamrong ◽  
Anchalee Chankong

Abstract Chavanich, S., Viyakarn, V., Loyjiw, T., Pattaratamrong, P., and Chankong, A. 2009. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. – ICES Journal of Marine Science, 66: 1515–1519. From June to October 2006 and 2007, mass bleaching of the soft coral, Sarcophyton spp., occurred for the first time in the upper Gulf of Thailand. Approximately 90% of the populations experienced extensive bleaching, and almost 95% of colonies were affected. Field observations also revealed that fragmentation of Sarcophyton spp. set in 1 month after the onset of bleaching. Some colonies started to recover to some extent by the end of July, with 95% of the population of Sarcophyton spp. recovering by October. Both acute and chronic trials were conducted to determine whether temperature and/or salinity triggered bleaching. In the acute tests, Sarcophyton spp. at 40°C and salinity 20 psu were completely bleached, and death occurred after 57 and 204 h, respectively. However, the colonies at 40 psu could survive through the experimental trial. In the chronic tests, Sarcophyton spp. died when exposed to 34°C, whereas complete bleaching and mortality of Sarcophyton spp. occurred at salinities of 10 and 49 psu. We conclude that elevated temperatures had a greater effect on the bleaching of Sarcophyton spp. than did salinity.


2005 ◽  
Vol 86 (1-2) ◽  
pp. 81-100 ◽  
Author(s):  
Ashley J. Watson ◽  
Arwel V. Hughes ◽  
Paul K. Fyfe ◽  
Marion C. Wakeham ◽  
Kate Holden-Dye ◽  
...  

1987 ◽  
Vol 7 (3) ◽  
pp. 1208-1216 ◽  
Author(s):  
D J Hurt ◽  
S S Wang ◽  
Y H Lin ◽  
A K Hopper

Saccharomyces cerevisiae strains carrying los1-1 mutations are defective in tRNA processing; at 37 degrees C, such strains accumulate tRNA precursors which have mature 5' and 3' ends but contain intervening sequences. Strains bearing los1-1 and an intron-containing ochre-suppressing tRNA gene, SUP4(0), also fail to suppress the ochre mutations ade2-1(0) and can1-100(0) at 34 degrees C. To understand the role of the LOS1 product in tRNA splicing, we initiated a molecular study of the LOS1 gene. Two plasmids, YEpLOS1 and YCpLOS1, that complement the los1-1 phenotype were isolated from the YEp24 and YCp50 libraries, respectively. YEpLOS1 and YCpLOS1 had overlapping restriction maps, indicating that the DNA in the overlapping segment could complement los1-1 when present in multiple or single copy. Integration of plasmid DNA at the LOS1 locus confirmed that these clones contained authentic LOS1 sequences. Southern analyses showed that LOS1 is a single copy gene. The locations of the LOS1 gene within YEpLOS1 and YCpLOS1 were determined by deletion and gamma-delta mapping. Two genomic disruptions of the LOS1 gene were constructed, i.e., an insertion of a 1.2-kilobase fragment carrying the yeast URA3 gene, los1::URA3, and a 2.4-kilobase deletion from the LOS1 gene, los1-delta V. Disruption or deletion of most of the LOS1 gene was not lethal; cells carrying the disrupted los1 alleles were viable and had phenotypes similar to those of cells carrying the los1-1 allele. Thus, it appears that the los1 gene product expedites tRNA splicing at elevated temperatures but is not essential for this process.


Sign in / Sign up

Export Citation Format

Share Document