scholarly journals On LBNE neutrino flux systematic uncertainties

2015 ◽  
Author(s):  
Paul L. G. Lebrun ◽  
James Hylen ◽  
Alberto Marchionni ◽  
Laura Fields ◽  
Amit Bashyal ◽  
...  
2017 ◽  
Vol 9 (6) ◽  
pp. 1
Author(s):  
Maurizio Michelini

Rejecting some old misconceptions (such as the “pulling” gravitation that ravaged classical physics) the Inertial-Gravitational theory supported by the Micro-quanta paradigm incorporates both the relativistic concepts of Mass - Momentum - Energy and the quantic Inertial Model of the particle mass. The flux of micro-quanta supports primarily the physical interaction that generates the Inertial forces defined by Newton. Scholars believing that Inertial forces originate from the properties of the empty space, do not pertain to the community of physicists believing on Newton’s Inertial Law. This great ancient physicist admitted he was unable to explicit the physical nature of his Law of Inertia (“Hypotheses non fingo”). However, marking the difference between “empty” and “absolute” space, he remained in his conviction that some unknown physical reality originates (in the absolute space) the inertial forces upon accelerated masses. At present, Micro-quanta paradigm describes the quantic objects that generate through collisions the physical inertial forces on particles. Since the flux of micro-quanta fills all space, there is no need to refer these collisions to some external System of reference. The relative velocity between quanta and particles comes out from the momentum that micro-quanta confer to particles. By this reason the Micro-quanta paradigm defines on pure dynamical bases the relativistic formalism that Special relativity derived from kinematics, so creating flaws that produced the well known paradoxes. To reveal the micro-quanta it's not necessary to devise particular experiments. The technique of the accelerometers has given many evidences of the physical reality guessed by Newton to explain inertial forces exerted on masses. Since the action of micro-quanta is always manifested in statistical terms, classical and relativistic physics allowed to describe Inertia and Gravitation without knowing the quantic nature of these phenomena. The micro-quanta Paradigm shows in particular the proportionality between cross section and mass (ratio Au) of all particles colliding with micro-quanta. To the aim of calculating the transmission across matter of micro-quanta and neutrinos (which show the same nature) the only unknown quantity is the numerical value of the ratio Au. Recalling that micro-quanta flux fills all space, it appears also interesting to search about neutrino collisions with micro-quanta flux as possible cause of the oscillations phenomena that occur during neutrino travels across the (so called) astronomic “empty” space. A quantitative indication on the ratio Ao is found in this paper from an experimental measurement of the solar neutrino flux interacting with the Earth mass in the course of the Borexino research carried out at Gran Sasso National Laboratory.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kevin J. Kelly ◽  
Pedro A. N. Machado ◽  
Alberto Marchionni ◽  
Yuber F. Perez-Gonzalez

Abstract We propose the operation of LEvEL, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100 ton-year and 1 ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.


2021 ◽  
Vol 503 (3) ◽  
pp. 4032-4049
Author(s):  
Antonio Ambrosone ◽  
Marco Chianese ◽  
Damiano F G Fiorillo ◽  
Antonio Marinelli ◽  
Gennaro Miele ◽  
...  

ABSTRACT Starburst galaxies, which are known as ‘reservoirs’ of high-energy cosmic-rays, can represent an important high-energy neutrino ‘factory’ contributing to the diffuse neutrino flux observed by IceCube. In this paper, we revisit the constraints affecting the neutrino and gamma-ray hadronuclear emissions from this class of astrophysical objects. In particular, we go beyond the standard prototype-based approach leading to a simple power-law neutrino flux, and investigate a more realistic model based on a data-driven blending of spectral indexes, thereby capturing the observed changes in the properties of individual emitters. We then perform a multi-messenger analysis considering the extragalactic gamma-ray background (EGB) measured by Fermi-LAT and different IceCube data samples: the 7.5-yr high-energy starting events (HESE) and the 6-yr high-energy cascade data. Along with starburst galaxies, we take into account the contributions from blazars and radio galaxies as well as the secondary gamma-rays from electromagnetic cascades. Remarkably, we find that, differently from the highly-constrained prototype scenario, the spectral index blending allows starburst galaxies to account for up to $40{{\ \rm per\ cent}}$ of the HESE events at $95.4{{\ \rm per\ cent}}$ CL, while satisfying the limit on the non-blazar EGB component. Moreover, values of $\mathcal {O}(100\, \mathrm{PeV})$ for the maximal energy of accelerated cosmic-rays by supernovae remnants inside the starburst are disfavoured in our scenario. In broad terms, our analysis points out that a better modelling of astrophysical sources could alleviate the tension between neutrino and gamma-ray data interpretation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Amando Hala

Abstract We estimate the form factors that parametrise the hadronic matrix elements of proton-to-pion transitions with the help of light-cone sum rules. These form factors are relevant for semi-leptonic proton decay channels induced by baryon-number violating dimension-six operators, as typically studied in the context of grand unified theories. We calculate the form factors in a kinematical regime where the momentum transfer from the proton to the pion is space-like and extrapolate our final results to the regime that is relevant for proton decay. In this way, we obtain estimates for the form factors that show agreement with the state-of-the-art calculations in lattice QCD, if systematic uncertainties are taken into account. Our work is a first step towards calculating more involved proton decay channels where lattice QCD results are not available at present.


2006 ◽  
Vol 151 (1) ◽  
pp. 295-298 ◽  
Author(s):  
B. Mitrica ◽  
I.M. Brancus ◽  
H. Rebel ◽  
J. Wentz ◽  
A. Bercuci ◽  
...  

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


Sign in / Sign up

Export Citation Format

Share Document