Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La0.67Ba0.33MnO3

2016 ◽  
Author(s):  
R. Pratama ◽  
B. Kurniawan ◽  
A. Manaf ◽  
M. R. Ramadhan ◽  
D. Nanto ◽  
...  
Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


2018 ◽  
Vol 31 (3) ◽  
pp. 26 ◽  
Author(s):  
Laheeb. A. Mohammed ◽  
Kareem. A. Jasim

   on this research is to study the effect of nickel oxide substitution on the pure phases superconductor Tl0.5Pb0.5Ba2Can-1Cun-xNixO2n+3-δ (n=3) where x=(0,0.2,0.4,0.6,0.8.and 1.0). The specimens in this work were prepared with used  procedure of solid state reaction with sintering temperature 8500C for 24 h .we used technical (4-prob)to calculated and the critical temperature Tc . The results of the XRD diffraction analysis showed that the structure for pure and doped phases was tetragonal with phases high-Tc phase (1223),(1212) and low-Tc phase (1202)  and add to the presence of some impure phase. It was noted the value a=b,c  the parameter of  the lattice increment  with the increment of Ni content. The increment of (NiO) concentration effects electrical resistivity, dielectric constant and the hardness.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Sherzod Kurbanbekov ◽  
Mazhyn Skakov ◽  
Viktor Baklanov ◽  
Batyrzhan Karakozov

2021 ◽  
Vol 13 (12) ◽  
pp. 6739
Author(s):  
Darko Landek ◽  
Lidija Ćurković ◽  
Ivana Gabelica ◽  
Mihone Kerolli Mustafa ◽  
Irena Žmak

In this work, alumina (Al2O3) ceramics were prepared using an environmentally friendly slip casting method. To this end, highly concentrated (70 wt.%) aqueous suspensions of alumina (Al2O3) were prepared with different amounts of the ammonium salt of a polycarboxylic acid, Dolapix CE 64, as an electrosteric dispersant. The stability of highly concentrated Al2O3 aqueous suspensions was monitored by viscosity measurements. Green bodies (ceramics before sintering) were obtained by pouring the stable Al2O3 aqueous suspensions into dry porous plaster molds. The obtained Al2O3 ceramic green bodies were sintered in the electric furnace. Analysis of the effect of three sintering parameters (sintering temperature, heating rate and holding time) on the density of alumina ceramics was performed using the response surface methodology (RSM), based on experimental data obtained according to Box–Behnken experimental design, using the software Design-Expert. From the statistical analysis, linear and nonlinear models with added first-order interaction were developed for prediction and optimization of density-dependent variables: sintering temperature, heating rate and holding time.


Author(s):  
Heytor V. S. B. Azevêdo ◽  
Rafael A. Raimundo ◽  
David D. S. Silva ◽  
Luís M. F. Morais ◽  
Franciné A. Costa ◽  
...  

2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


Sign in / Sign up

Export Citation Format

Share Document