Influence of compressive stress and electric field on the stability of [011] poled and [01¯1] oriented 31-mode PZN-0.055PT single crystals

2016 ◽  
Vol 119 (22) ◽  
pp. 224101 ◽  
Author(s):  
Adam A. Heitmann ◽  
Joseph A. Stace ◽  
Leong-Chew Lim ◽  
Ahmed H. Amin
2010 ◽  
Vol 445 ◽  
pp. 43-46 ◽  
Author(s):  
Yang Guan ◽  
Shinji Fukao ◽  
Kazuyuki Ito ◽  
Yoshikazu Nakanishi ◽  
Yuuki Sato ◽  
...  

X-ray radiation using pyroelectric crystal is intermittent and the X-ray intensity is low and unstable compared with a conventional X-ray radiation method, such as X-ray tube. It is expected that the X-ray intensity becomes stable if electric field intensity and supply of electron are stable. In this study, to use X-ray radiation equipment as an electron source, tandem-type X-ray radiation equipment which is composed of two LiNbO3 single crystals polarized in a z-axis is proposed. When the temperature gradient for each crystal was the same, the X-ray intensity became approximately 6 times higher at a maximum. When the temperature gradient for each crystal was reversed, the period of X-ray radiation became approximately two times longer and the X-ray intensity became approximately 20 times higher at a maximum. Moreover, the stability of X-ray radiation for the repetition of temperature could be improved.


Author(s):  
Y. Feng ◽  
X. Y. Cai ◽  
R. J. Kelley ◽  
D. C. Larbalestier

The issue of strong flux pinning is crucial to the further development of high critical current density Bi-Sr-Ca-Cu-O (BSCCO) superconductors in conductor-like applications, yet the pinning mechanisms are still much debated. Anomalous peaks in the M-H (magnetization vs. magnetic field) loops are commonly observed in Bi2Sr2CaCu2Oy (Bi-2212) single crystals. Oxygen vacancies may be effective flux pinning centers in BSCCO, as has been found in YBCO. However, it has also been proposed that basal-plane dislocation networks also act as effective pinning centers. Yang et al. proposed that the characteristic scale of the basal-plane dislocation networksmay strongly depend on oxygen content and the anomalous peak in the M-H loop at ˜20-30K may be due tothe flux pinning of decoupled two-dimensional pancake vortices by the dislocation networks. In light of this, we have performed an insitu observation on the dislocation networks precisely at the same region before and after annealing in air, vacuumand oxygen, in order to verify whether the dislocation networks change with varying oxygen content Inall cases, we have not found any noticeable changes in dislocation structure, regardless of the drastic changes in Tc and the anomalous magnetization. Therefore, it does not appear that the anomalous peak in the M-H loops is controlled by the basal-plane dislocation networks.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yuzhu Pan ◽  
Xin Wang ◽  
Jingda Zhao ◽  
Yubing Xu ◽  
Yuwei Li ◽  
...  

Perovskites single crystals (PSCs) could be used to made high performance photoelectric detectors due to its superior optoelectronic characteristics. Generally, external electric field need to be applied in the PSCs-based...


2017 ◽  
Vol 70 (4) ◽  
pp. 367 ◽  
Author(s):  
Ganna Gryn'ova ◽  
Michelle L. Coote

Accurate quantum-chemical calculations are used to analyze the effects of charges on the kinetics and thermodynamics of radical reactions, with specific attention given to the origin and directionality of the effects. Conventionally, large effects of the charges are expected to occur in systems with pronounced charge-separated resonance contributors. The nature (stabilization or destabilization) and magnitude of these effects thus depend on the orientation of the interacting multipoles. However, we show that a significant component of the stabilizing effects of the external electric field is largely independent of the orientation of external electric field (e.g. a charged functional group, a point charge, or an electrode) and occurs even in the absence of any pre-existing charge separation. This effect arises from polarization of the electron density of the molecule induced by the electric field. This polarization effect is greater for highly delocalized species such as resonance-stabilized radicals and transition states of radical reactions. We show that this effect on the stability of such species is preserved in chemical reaction energies, leading to lower bond-dissociation energies and barrier heights. Finally, our simplified modelling of the diol dehydratase-catalyzed 1,2-hydroxyl shift indicates that such stabilizing polarization is likely to contribute to the catalytic activity of enzymes.


2013 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Gang Su

The crystalline electric field parameters Anmfor HoFe11Ti under different pressures were evaluated by fitting calculations to the magnetization curves measured on the single crystals at several temperatures. It was found that magneto-crystalline anisotropy has been changed by high pressure and the Anmfor HoFe11Ti under high pressures are strikingly different from Anmfor the corresponding HoFe11Ti H with interstitial hydrogen atom.


2007 ◽  
Vol 350 ◽  
pp. 89-92
Author(s):  
Keisuke Yokoh ◽  
Tomomitsu Muraishi ◽  
Song Min Nam ◽  
Hirofumi Kakemoto ◽  
Takaaki Tsurumi ◽  
...  

To induce fine engineered domain configurations into potassium niobate (KNbO3) single crystals, two kinds of methods were performed, i.e., (1) high DC electric field exposure along the opposite direction of polarization of KNbO3 single-domain crystals at room temperature, and (2) introduction of randomly oriented fine domain configuration by heat treatment at 700 °C and then high DC electric field exposure along [001]c direction of KNbO3 multidomain crystals at room temperature. When the method (1) was performed, finally, the poled KNbO3 crystals became to single-domain state again through the formation of multidomain state. On the other hand, the KNbO3 multidomain crystals were obtained by using the method (2), and an enhancement of piezoelectric-related properties was observed.


Sign in / Sign up

Export Citation Format

Share Document