Friction stir welding of T joints of dissimilar aluminum alloy: A review

2018 ◽  
Author(s):  
Shrikant B. Thakare ◽  
Vivek D. Kalyankar
2014 ◽  
Vol 57 ◽  
pp. 146-155 ◽  
Author(s):  
Yong Zhao ◽  
Lilong Zhou ◽  
Qingzhao Wang ◽  
Keng Yan ◽  
Jiasheng Zou

2013 ◽  
Vol 554-557 ◽  
pp. 985-995 ◽  
Author(s):  
Enrico Lertora ◽  
Chiara Mandolfino ◽  
Carla Gambaro

In aeronautics and aerospace construction, whenever a seam is needed between aluminum alloy parts, riveting, nailing or bolting are the preferred methods of junction. Friction stir welding technology has made possible the realization of high strength aluminum alloy joints, which are normally considered non-weldable with conventional welding techniques.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3496
Author(s):  
Haijun Wang ◽  
Diqiu He ◽  
Mingjian Liao ◽  
Peng Liu ◽  
Ruilin Lai

The online prediction of friction stir welding quality is an important part of intelligent welding. In this paper, a new method for the online evaluation of weld quality is proposed, which takes the real-time temperature signal as the main research variable. We conducted a welding experiment with 2219 aluminum alloy of 6 mm thickness. The temperature signal is decomposed into components of different frequency bands by wavelet packet method and the energy of component signals is used as the characteristic parameter to evaluate the weld quality. A prediction model of weld performance based on least squares support vector machine and genetic algorithm was established. The experimental results showed that, when welding defects are caused by a sudden perturbation during welding, the amplitude of the temperature signal near the tool rotation frequency will change significantly. When improper process parameters are used, the frequency band component of the temperature signal in the range of 0~11 Hz increases significantly, and the statistical mean value of the temperature signal will also be different. The accuracy of the prediction model reached 90.6%, and the AUC value was 0.939, which reflects the good prediction ability of the model.


2021 ◽  
pp. 129872
Author(s):  
Wenquan Wang ◽  
Suyu Wang ◽  
Xinge Zhang ◽  
Yuxin Xu ◽  
Yingtao Tian ◽  
...  

Author(s):  
Sharda Pratap Shrivas ◽  
G.K. Agrawal ◽  
Shubhrata Nagpal ◽  
Amit Kumar Vishvakarma ◽  
Ashish Kumar Khandelwal

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


Author(s):  
Lewis N. Payton ◽  
Vishnu Vardhan Chandrasekaran ◽  
Wesley S. Hunko

A dimensionless correlation is developed based on Buckingham’s Pi-Theorem to estimate the temperature fields generated by the movement of a tool during the Friction Stir Welding of an aluminum alloy (6061-T6). Symmetrical thermocouple measurements are taken during a statistically designed experiment using different factor levels (RPM, Traverse, etc). Analytical comparison (using multivariate ANOVA) validates the predicted dimensionless correlation including the often-reported difference between the advancing versus retreating side of the Friction Stir Tool.


Sign in / Sign up

Export Citation Format

Share Document