scholarly journals Single well productivity prediction of carbonate reservoir

2018 ◽  
Author(s):  
Xu Le
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4134
Author(s):  
Shuozhen Wang ◽  
Shuoliang Wang ◽  
Chunlei Yu ◽  
Haifeng Liu

Single well productivity is an important index of oilfield production planning and economic evaluation. Due to fracture-vuggy reservoirs being characteristically strongly heterogeneous and having complex fluid distribution, the commonly used single well productivity prediction methods for fracture-vuggy reservoirs have many problems, such as difficulty in obtaining reservoir parameters and producing large errors in the forecast values of single well productivity. In this paper, based on the triple medium model, the Laplace transform and Duhamel principle are used to obtain the productivity equation of a single well in a fracture-vuggy reservoir. Secondly, the seismic attributes affecting the productivity of a single well are selected using the Spearman and Pearson correlation index calculation method. Finally, the selected seismic attributes are introduced into the productivity equation of the triple medium model through the interporosity flow coefficient and the elastic storativity ratio, and the undetermined coefficients under different karst backgrounds are determined using multiple nonlinear regression. From these, a new method for predicting single well productivity of fracture-vuggy reservoir is established. In order to verify the feasibility of the new method, based on the actual production data of a fracture-vuggy reservoir in Xinjiang, the new single well productivity prediction method is used to predict the productivity of 134 oil wells. The results show that the new productivity prediction method not only reduces calculation workload, but also improves the accuracy of productivity prediction, which contributes to a good foundation for future oilfield development.


2007 ◽  
Vol 10 (05) ◽  
pp. 453-457 ◽  
Author(s):  
Rajesh Kumar ◽  
S. Ramanan ◽  
J.L. Narasimham

Summary Oil productivity from Mumbai High field, an offshore multilayered carbonate reservoir, increased significantly through the implementation of a major redevelopment program. Geoscientific information available from approximately 700 exploratory and develop- ment wells drilled in the field during nearly 25 years was incorporated during geological and reservoir simulation modeling of the field. High-technology drilling (viz. horizontal/multilaterals for the new development wells) was adopted on field scale to effectively address typical complexity of the layered carbonate reservoirs. Since the commencement of the project in 2000, approximately 140 new wells were drilled, mostly with horizontal and multilateral drainholes. Besides these, more than 70 suboptimal producers were also converted as horizontal sidetracks under brownfield development. The horizontal sidetracks were drilled as long-drift sidetrack (LDST), extended-reach drilling (ERD), LDST-ERD, short-drift sidetrack (SDST), and medium-radius drainhole (MRDH) types of wells through the application of innovative and emerging drilling technologies with nondamaging drilling fluids, whipstocks to kick off sidetrack wells, rotary-steering systems, and expandable tubulars to complete horizontal sidetracks in lower layers. With the implementation of this project, the declining trend was fully arrested and a significant upward trend in production has been established. Introduction The field redevelopment process requires the intergration of reservoir-development strategies, facility options, and drilling and production philosophies to maximize oil and gas recovery from a matured field. A significant number of case studies are available on mature field revitalization using a multidisciplinary team concept, exhaustive geo-scientific data analysis, and new drilling technologies (Chedid and Colmenares 2002; Clark et al. 2000; Dollens et al. 1999; Kinchen et al. 2001). Advancements in drilling and completion technology have enabled construction of horizontal wells with longer wellbores, more-complex well geometry, and sophisticated completion designs. Horizontal wells provide an effective method to produce bypassed oil from matured fields. In the early 1980s, this technology was in the development stage and was used in limited applications. By the 1990s, the technology had matured, and its acceptance in the industry had increased significantly. Performance of horizontal/multilateral wells, risk assessment of horizontal-well productivity and comparison of horizontal- and vertical-well performance in different fields is available in literature (Babu and Aziz 1989; Brekke and Thompson 1996; Economides et al. 1989; Joshi 1987; Joshi and Ding 1995; Mukherjee and Economides 1991; Norris et al. 1991; Vij et al. 1998). A significant number of horizontal/multilateral development wells were drilled as a part of redevelopment of Mumbai High, a matured multilayered carbonate offshore field in Western India. The details of new technologies applied and performance of these new high-technology wells are presented in this paper. Besides comparison of well productivity of horizontal and conventional sidetrack wells, this paper presents some technical issues faced.


2021 ◽  
Author(s):  
Clement Fabbri ◽  
Haitham Ali Al Saadi ◽  
Ke Wang ◽  
Flavien Maire ◽  
Carolina Romero ◽  
...  

Abstract Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir. This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results. A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints. The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.


2014 ◽  
Vol 1044-1045 ◽  
pp. 688-691
Author(s):  
Ran Zhang ◽  
Jun Zhou ◽  
Cheng Yong Li

BP neural network has been successfully used in the gas well productivity prediction, but as a result of neural network is sensitive to the number of input parameters, we had to ignore some factors that is less important to the gas well productivity. In addition, the existing various productivity prediction method cannot consider the influence of some important qualitative factors. This article integrated the advantages of fuzzy comprehensive evaluation and BP neural network, fuzzy comprehensive evaluation method is used to construct the BP neural network's input matrix, and BP neural network learning function is used to solve the connection weights, so as to achieve the aim of predicting gas production. This method not only can consider as many factors influence on gas well production, ut also can consider qualitative factors, so the forecast results of the new model are more realistically close to the actual production situation of reservoirs.


2017 ◽  
Vol 151 ◽  
pp. 159-168 ◽  
Author(s):  
Jinghong Hu ◽  
Chong Zhang ◽  
Zhenhua Rui ◽  
Yanlong Yu ◽  
Zhangxin Chen

2006 ◽  
Vol 9 (03) ◽  
pp. 209-216 ◽  
Author(s):  
William W. Weiss ◽  
Xina Xie ◽  
Jason Weiss ◽  
Vishu Subramanian ◽  
Archie R. Taylor ◽  
...  

Summary Following a series of laboratory imbibition-cell experiments, field tests were conducted to determine the effectiveness of surfactant-soak treatments as a single-well enhanced-oil-recovery (EOR) technique. The tests were conducted in the dolomite interval of the Phosphoria formation. Artificial intelligence was applied to analyze the mixed test results. The analysis suggested that the gamma ray log can be used to predict results and that a minimum amount of surfactant is required to improve production. Introduction Water imbibition as a recovery process was tested in the Spraberry field during the 1950s (Elkins and Skov 1962, 1963). This early work was followed by a test of the process in Cottonwood Creek field during the 1960s (Willingham and McCaleb 1967). Around the time of these field tests, a patent was issued (Graham et al. 1957) that suggested surfactants could enhance the imbibition recovery process. A later patent (Stone et al. 1970) implied that a Spraberry field test was designed, but results were not reported. Forty years later, researchers (Spindler et al. 2000; Standnes and Austad 2000; Chen et al. 2000) returned to the subject of wettability alteration. One description of a field test of the surfactant-soak process has been published (Chen et al. 2000). A great deal of effort was expended during the 1970s and 1980s in designing systems and field testing surfactant fluids with ultralow interfacial tensions (IFTs) as a flooding EOR process. Maintaining the integrity of the chemical slug from the injection well to the producing wells was fraught with problems. However, slug-integrity problems are diminished in single-well EOR applications. Recent laboratory work focused on the easily performed and interpreted imbibition-cell experiments. These experiments (with and without surfactants) and the reported success of pressure pulsing at Cottonwood Creek prompted further laboratory testing with reservoir rock and fluids (Xie 2002; Xie et al. 2004). This recent work indicated that a nonionic surfactant could substantially increase recovery from Phosphoria wells in the Cottonwood Creek field. The shallow-shelf carbonate reservoir is characterized as a steeply dipping, algal reef of the Phosphoria formation producing sour, 27°API, black oil from a dolomitized interval. Thickness of the dolomite varies from 20 to 100 ft. The average porosity is ~10% with ~1.0 md matrix permeability. The connate-water saturation is ~10%. Pan American Petroleum reported the low-pressure and low-temperature reservoir to be naturally fractured and oil-wet (Willingham and McCaleb 1967). Their description was based on laboratory core studies. Tests performed in the 1990s generated U.S. Bureau of Mines (USBM) wettability values of -0.1, -0.12, -0.18, and -0.26. The Cottonwood Creek field is located in the Bighorn basin of Wyoming, as shown in Fig. 1, and is operated by Continental Resources Inc.


2011 ◽  
Vol 71-78 ◽  
pp. 1915-1919
Author(s):  
Min Yang ◽  
Jun Li ◽  
Jing Cheng Liu

It is very important to forecast the gas well productivity of gas reservoir accurately. On the basis of analyzing the parameter performance of support vector machine (SVM) for regression estimation, the paper proposes gas well productivity prediction model based on particle swarm optimization (PSO) and SVM. The parameter of SVM was optimized by PSO. This method took advantage of the minimum structure risk of SVM and the quickly globally optimizing ability of PSO. Compared with BP neural network model, the proposed GA-SVM model for gas well productivity in practical engineering has higher accuracy and speed, and the maximum error is 2.8% . Thus, it provided a new approach to predict the gas well productivity.


2017 ◽  
Vol 10 (1) ◽  
pp. 195-203
Author(s):  
Weifu Liu

Introduction: To address reservoir quality assessment in highly complex and heterogeneous carbonate reservoirs, a methodology utilizing fuzzy logic is developed and presented in this paper. Based on carbonate reservoir characteristics, three parameters reflecting the macroscopic and microscopic of storage abundance, permeability, and median of pore throat radius were selected to establish the factor set and the evaluation criteria. After analysis of core and test data, a membership function is constructed by semi-drop trapezoid method and the weight formula is also determined by reservoir factor sub-index. The developed method then is used to evaluate a carbonate reservoir in the Tarim Basin in China. Based on the result of single well evaluation, the plane classification map of the carbonate reservoir quality is constructed. Results obtained from reservoir quality assessment in the K32 well show that I-level, II-level, and III-level reservoir qualities account for 58%, 37%, 5% of the reservoir, respectively. The results are consistent with the actual production data demonstrating reliability of the proposed method for reservoir quality assessment practices in usually very complex and heterogeneous carbonate reservoirs. Background: Carbonate reservoirs are complex and heterogeneous and this makes their evaluation a difficult task. Objective: To overcome the uncertainties associated with evaluation of complex carbonate reservoirs a reliable method to accurately evaluate carbonate reservoirs is presented. Methods: Fuzzy logic is used to evaluate a carbonate reservoir from Tarim Basin in China. Based on carbonate reservoir characteristics, three parameters reflecting the macroscopic and microscopic of storage abundance, permeability, and median of pore throat radius are selected to establish the factor set and to evaluate the criteria of carbonate reservoir. After the analysis of core and test data, a membership function is reasonably constructed by semi-drop trapezoid method and the weight formula is also determined by reservoir factor sub-index. Results: An effective methodology for the evaluation of reservoir quality in carbonate reservoirs is established by using fuzzy logic. In addition, an example reservoir from China is used to demonstrate the applicability of the developed method. Conclusion: Based on the result of single well evaluation, the plane classification map of the carbonate reservoir is constructed. Favorable zones in the reservoir are also delineated. Evaluation results are consistent with the actual production data of gas and oil which proves that the proposed method is instrumental in reservoir quality assessment.


2021 ◽  
Author(s):  
Hamzah Kamal ◽  
Prakoso Noke Fajar ◽  
Ghozali Farid ◽  
Aryanto Agus ◽  
Priyantoro Tri Atmojo ◽  
...  

Abstract There is no well operation that is truly non-damaging. Any invasive operation, even production phase itself, may be damaging to well productivity. An interesting case was found in L-Field which is located in South Sumatra, Indonesia. All four wells are predicted to cease to flow after five-year production and artificial lift have to be installed to prevent steep decline in oil production. Unfortunately, all of wells’ productivity index (PI) decreased post well intervention and therefore, couldn’t achieve target. The PI was continuously decreasing during production phase and aggravated the decline in oil production. Remediation action by systematic approach was applied to solve the problem. Early diagnostic revealed some potential causes through evaluation of both production and well treatment data. Laboratory test such as mineralogy analysis, crude composition and water analysis, solubility and compatibility test have been conducted and clarified the root cause that formation damage occurred in multiple mechanism related to incompatibility of the workover fluid and organic deposition. Then, possible well treatments were listed with pros and cons by considering post water production related to the carbonate reservoir properties. Subsequently, chemical matrix injection was ranked based on less possibility of water breakthrough risk. Diesel fuel and de-emulsifier injection was decided as the first treatment in order to remove formation damage caused by organic deposition. The rate was increased temporary with Water Cut (WC) remained at the same level. The subseqeuent effort was to inject low reaction chelating acid and the result showed temporary improvement and the production did achieve significant gain. Finally, the third attempt indicated promising results with the injection of aromatic solvent followed by chelating acid. The well productivity was increased to more than 20 times of the pre treatment levels. The method can be replicated to other affected wells with similar damage mechanism. High vertical permeability over horizontal permeability becomes a real threat in carbonate strong water driver reservoir in L-field. Thus, matrix acidizing treatment has to be carefully applied to prevent unwanted water production. Non-aggressive and slow reaction acid were chosen to prevent face dissolution reaction that leads to water breakthrough.


Sign in / Sign up

Export Citation Format

Share Document