Acetone gas sensing at room temperature using metal oxide semiconductor nanomaterial based gas sensor

2020 ◽  
Author(s):  
M. S. Lekshmi ◽  
K. J. Suja
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 647
Author(s):  
Tobias Baur ◽  
Johannes Amann ◽  
Caroline Schultealbert ◽  
Andreas Schütze

More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure volatile organic compounds (VOCs) in indoor air, an important air quality factor. However, their standard operating mode often does not make full use of their true capabilities. More sophisticated operation modes, extensive calibration and advanced data evaluation can significantly improve VOC measurements and, furthermore, achieve selective measurements of single gases or at least types of VOCs. This study provides an overview of the potential and limits of MOS gas sensors for IAQ monitoring using temperature cycled operation (TCO), calibration with randomized exposure and data-based models trained with advanced machine learning. After lab calibration, a commercial digital gas sensor with four different gas-sensitive layers was tested in the field over several weeks. In addition to monitoring normal ambient air, release tests were performed with compounds that were included in the lab calibration, but also with additional VOCs. The tests were accompanied by different analytical systems (GC-MS with Tenax sampling, mobile GC-PID and GC-RCP). The results show quantitative agreement between analytical systems and the MOS gas sensor system. The study shows that MOS sensors are highly suitable for determining the overall VOC concentrations with high temporal resolution and, with some restrictions, also for selective measurements of individual components.


2006 ◽  
Vol 917 ◽  
Author(s):  
Carlos Driemeier ◽  
Elizandra Martinazzi ◽  
Israel J. R. Baumvol ◽  
Evgeni Gusev

AbstractHfO2-based materials are the leading candidates to replace SiO2 as the gate dielectric in Si-based metal-oxide-semiconductor filed-effect transistors. The ubiquitous presence of water vapor in the environments to which the dielectric films are exposed (e.g. in environmental air) leads to questions about how water could affect the properties of the dielectric/Si structures. In order to investigate this topic, HfO2/SiO2/Si(001) thin film structures were exposed at room temperature to water vapor isotopically enriched in 2H and 18O followed by quantification and profiling of these nuclides by nuclear reaction analysis. We showed i) the formation of strongly bonded hydroxyls at the HfO2 surface; ii) room temperature migration of oxygen and water-derived oxygenous species through the HfO2 films, indicating that HfO2 is a weak diffusion barrier for these oxidizing species; iii) hydrogenous, water-derived species attachment to the SiO2 interlayer, resulting in detrimental hydrogenous defects therein. Consequences of these results to HfO2-based metal-oxide-semiconductor devices are discussed.


2020 ◽  
Vol 8 (38) ◽  
pp. 13169-13188
Author(s):  
Zejun Han ◽  
Yuan Qi ◽  
Zhengyi Yang ◽  
Hecheng Han ◽  
Yanyan Jiang ◽  
...  

The sensing mechanisms and effective strategies for enhancing the formaldehyde detection performance of metal oxide semiconductors have been reviewed.


Sign in / Sign up

Export Citation Format

Share Document