scholarly journals Phytochemical and antifungal activity combination of Costus speciosus rhizome and Bryophyllum pinnatum in vitro

2021 ◽  
Author(s):  
Bayyinatul Muchtaromah ◽  
Irsyandi Fadhurniawan ◽  
Evika Sandi Savitri ◽  
Prilya Dewi Fitriasari ◽  
Nabilla Qurrota A'yunin ◽  
...  
2017 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
M Hamburger ◽  
M Mennet ◽  
O Potterat ◽  
...  

2019 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
K Kalic ◽  
MT Faleschini ◽  
M Mennet ◽  
...  

2005 ◽  
Vol 40 (1-2) ◽  
pp. 43-54 ◽  
Author(s):  
K. Yamunarani ◽  
R. Jaganathan ◽  
R. Bhaskaran ◽  
P. Govindaraju ◽  
R. Velazhahan

Author(s):  
Rakesh Patel ◽  
Hardik Patel ◽  
Ashok Baria

The aim of this work was to prepare and evaluate the topical carbopol gel formulation containing ketoconazole encapsulated liposomes. Ketoconazole loaded liposomes were prepared by thin film hydration technique. The prepared liposomes were incorporated into 1% carbopol gel, and the systems were evaluated for in-vitro drug release, drug retention into skin and in-vitro antifungal activity. The in-vitro permeation of ketoconazole using wistar albino rat skin from liposomal gel was compared with that of plain drug gel and also with plain drug cream containing 2% w/w of ketoconazole. The release of ketoconazole from liposomal gel was much slower than from non liposomal formulations. Gel containing liposomal ketoconazole showed maximum antifungal activity after 30 hours over plain ketoconazole gel and cream formulations.


2017 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Nurhasanah Nurhasanah ◽  
Fauzia Andrini ◽  
Yulis Hamidy

Shallot (Allium ascalonicum L.) has been known as traditional medicine. Shallot which has same genus with garlic(Allium sativum L.) contains allicin that is also found in garlic and has been suspected has fungicidal activity toCandida albicans. It is supported by several researches. Therefore, shallot is suspected has antifungal activity too.The aim of this research was to know antifungal activity of shallot’s water extortion againsts Candida albicans invitro. This was a laboratory experimental research which used completely randomized design, with diffusion method.Shallot’s water extortion was devided into three concentrations, there were 50%, 100% and 200%. Ketoconazole 2%was positive control and aquadest was negative control. The result of this research based on analysis of varians(Anova), there was significant difference between several treatments and was confirmed with Duncan New MultipleRange Test (DNMRT) p<0,05, there was significant difference between 100% shallot’s water extortion with othertreatments, but there was no significant difference between 50% shallot’s water extortion with 200% shallot’s. Theconclusion was shallot’s water extortion had antifungal activity againsts Candida albicans with the best concentration100%, but it was lower than ketoconazole 2%.


2018 ◽  
Vol 18 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Luana da S.M. Forezi ◽  
Luana Pereira Borba-Santos ◽  
Mariana F.C. Cardoso ◽  
Vitor F. Ferreira ◽  
Sonia Rozental ◽  
...  

Sporotrichosis is a serious public health problem in Brazil that affects human patients and domestic animals, mainly cats. Thus, the search for new antifungal agents is required also due to the emergence and to the lack of effective drugs available in the therapeutic arsenal. The aim of this study was to evaluate the in vitro antifungal profile of two synthetic series of coumarin derivatives against Sporothrix schenckii and Sporothrix brasiliensis. The three-components synthetic routes used for the preparation of coumarin derivatives have proved to be quite efficient and compounds 16 and 17 have been prepared in good yields. The inhibitory activity of nineteen synthetic coumarins derivatives 16a-i and 17a-j were evaluated against Sporothrix spp. yeasts and the most potent compounds were 16b and 17i. However, according to concentrations able to inhibit (minimum inhibitory concentrations) and kill (minimum fungicidal concentrations) the cells, 17i was more effective than 16b against Sporothrix spp. Thus, 17i exhibited good antifungal activity against S. brasiliensis and S. schenckii, suggesting that it is an important scaffold for the development of novel antifungal agents.


2019 ◽  
Vol 9 (1) ◽  
pp. 21-28
Author(s):  
Nisha Sharma ◽  
Shashikiran Misra

Background and Objectives: Dermatophytosis (topical fungal infection) is the 4th common disease in the last decade, affecting 20-25% world’s population. Patients of AIDS, cancer, old age senescence, diabetes, cystic fibrosis become more vulnerable to dermatophytosis. The conventional topical dosage proves effective as prophylactic in preliminary stage. In the advanced stage, the therapeutics interacts with healthy tissues before reaching the pathogen site, showing undesirable effects, thus resulting in pitiable patient compliance. The youngest carbon nano-trope “Graphene” is recently used to manipulate bioactive agents for therapeutic purposes. Here, we explore graphene via smart engineering by virtue of high surface area and high payload for therapeutics and developed graphene–ketoconazole nanohybrid (Gn-keto) for potent efficacy towards dermatophytes in a controlled manner. </P><P> Methods: Polymethacrylate derivative Eudragit (ERL100 and ERS 100) microspheres embedded with keto and Gn-keto nanohybrid were formulated and characterized through FTIR, TGA, and SEM. In vitro drug release and antifungal activity of formulated Gn-keto microspheres were assessed for controlled release and better efficacy against selected dermatophytes. </P><P> Results: Presence of numerous pores within the surface of ERL100 microspheres advocated enhanced solubility and diffusion at the site of action. Controlled diffusion across the dialysis membrane was observed with ERS100 microspheres owing to the nonporous surface and poor permeability. Antifungal activity against T. rubrum and M. canis using microdilution method focused on a preeminent activity (99.785 % growth inhibition) of developed nanohybrid loaded microspheres as compared to 80.876% of keto loaded microspheres for T. rubrum. The culture of M. canis was found to be less susceptible to formulated microspheres. Conclusion: Synergistic antifungal activity was achieved by nanohybrid Gn-Keto loaded microspheres against selected topical fungal infections suggesting a vital role of graphene towards fungi.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Yajun Zheng ◽  
Zhengyue Ma ◽  
Xinghua Zhang ◽  
Ning Yang ◽  
Gengliang Yang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document