Browse to Bonaparte stratigraphic evaluation

2013 ◽  
Vol 53 (2) ◽  
pp. 483
Author(s):  
Marcus Lemberger ◽  
James Stockley ◽  
Tim Gibbons

After an initial 2010 stratigraphic, depositional environment and facies determination study of 75 wells in the Browse Basin, TGS has pushed this high-resolution project north into the Bonaparte Basin area. The study incorporates a further 165 wells located across the Ashmore Platform, Vulcan Sub-basin, Londonderry High, Malita and Calder Grabens, Sahul and Flamingo synclines, Laminara and Flamingo highs, Sahul Platform, Troubadour Terrace, and offshore Petrel Sub-basin areas. This multi-basin project has combined all the selected relevant public data into one interpretation study and is delivered in an integrated environment—wells are standardised and sequences interpreted. Once depositional environment and facies are allocated, multi-element maps are produced showing how the basin environments change through time and structural evolution. Stratigraphic interpretation has determined 37 sequences and 32 associated facies maps. Both Browse Basin (140,000 km2) and Bonaparte Basin (270,000 km2) are relatively less explored and at different ages in their exploration life-cycle. Both have proved to be oil and gas bearing across numerous different stratigraphic ages with a wide range of trapping and reservoir methods. This study aims to further aid North West Shelf exploration by delineating, among other facets, the presence or otherwise of rocks with reservoir and seal potential and by identifying structural elements such as the Petrel Sub-basin salt diapirs. This regional well data stratigraphic approach has been used across all the UK and Norway continental shelf hydrocarbon provinces. TGS sees the Australian North West Shelf as a province where this approach will further assist sub-surface understanding, and hence exploration success.

2019 ◽  
Vol 7 (4) ◽  
pp. SH19-SH31
Author(s):  
Gabriela Salomão Martins ◽  
Webster Ueipass Mohriak ◽  
Nivaldo Destro

The Sergipe-Alagoas Basin, situated in the north-east Brazilian margin, has a long tradition of oil and gas production and the presence and distribution of evaporites play an important role in petroleum systems in the basin. However, little research has focused on the structural evolution of the older, synrift evaporitic sections of the basin. We have focused explicitly in the detailed subsurface structural characterization of the rift in the Alagoas subbasin and the distribution of the Early Aptian evaporites. To accomplish this objective, we interpreted selected 2D and 3D seismic and well data located in two areas known as the Varela Low (VL) and Fazenda Guindaste Low (FGL). We identified diverse deformation styles in those two basin depocenters. Our interpretation indicates that VL consists of a half-graben with a significant rollover structure, controlled by two listric northeast–southwest border faults. The deformation in the hanging wall is also accommodated by release faults and minor antithetic faults. In this depocenter, we mapped in the seismic and the well data an older evaporitic sequence within the Coqueiro Seco Fm., known as Horizonte Salt. This evaporitic section occurs in the internal part of the VL half graben, where it is limited by release and antithetic faults. Significant salt strata growing toward the antithetic fault is observed. Whereas, the FGL represents a graben elongated along the north-east direction and is controlled by several types of structures. We recognized normal synthetic and antithetic faults, transfer zones, release faults, and rollover anticlines in the seismic throughout this depocenter. We mapped an evaporitic section within the Maceió Fm., known as Paripueira Salt, which consists of disconnected salt bodies, restricted to the hanging walls of synrift faults.


2020 ◽  
Vol 16 (4) ◽  
pp. 41-48
Author(s):  
O.D. Naumenko

In this article the author carried out sedimentary and genetic modeling of facies parameters within heterogeneous geological bodies based on the analysis of geological and geophysical materials in the Southern Ukrainian oil and gas region. Special attention was paid to clastic facies and parameters demonstrating the degree of heterogeneity and a wide range of facial settings of the sedimentation basin. The data from lithological, geochemical, and geophysical field studies of wells was interpreted to predict hydrocarbon traps. This resulted in the facial diagnostic of the groups of geological bodies of clastic rocks coexisting with sediments of both tectonic and ridge morphological structure of the study area. Such diagnostics allowed us to build a prognostic lithologicfacial (sedimentation) section. Based on the modeling of the Vendian top (Vendian is a stratigraphic unit partially corresponding to Ediacaran) and the Jurassic base, a schematic map of the Paleozoic sediments was constructed for the first time, which made it possible to identify zones of the potential distribution of the former reef structures. The article presents the spatial forecast of hydrocarbon reservoir distribution in geological bodies of oil and gas bearing complexes within the PreDobruja Trough. The data allow forecasting a large number of traps, mainly small ones, formed by clusters of cavernous dolomites, limestones, and mixed rocks confined to certain cyclical elements and, in particular, associated with diastems. Most of such traps are caused by metasomatic dolomitization and paleokarst.


Author(s):  
Thomas Métais ◽  
Stéphan Courtin ◽  
Manuela Triay ◽  
François Billon ◽  
Pascal Duranton ◽  
...  

The RCC-M code [1] is a well recognized international code and provides rules for the design and the construction of mechanical equipment for pressurized water reactors. It is used today for the nuclear industry exclusively, in countries such as France, South Africa and China and it is the basis for the design of the UK EPR to be built in Hinkley Point. The RCC-M code’s fatigue rules emanate from the ASME Boiler and Pressure Vessel Code and are hence very similar, albeit they have evolved in their own way over time to include some R&D results and other evolutions. These rules are published by AFCEN which involves a wide range of international organizations from the nuclear industry such as Apave, Areva, Bureau Veritas, CEA, DCNS, EDF, EDF Energy, ONET-MHI, Rolls-Royce and Westinghouse. The EN-13445-3 [2] is a European standard which is mostly in use today in the conventional industry. Its fatigue rules are a compilation of rules from various national European codes, such as the German AD-Merkblatt, the British Standards, the Eurocodes for civil works and the French CODAP. The rules for fatigue are compiled in Chapters 17 and 18 of EN-13445-3 and have been the result of the work of contributors from major European organizations from the nuclear, oil and gas, chemical and mechanical industries: these include, among others, Areva, the Linde Group, CETIM, TÜV, and the TWI (The Welding Institute). Since the beginning of 2015, AFCEN has created a technical Working Group (WG) on the topic of fatigue with the objective of identifying the Safety Factors and Uncertainties in Fatigue analyses (SFUF) and of potentially proposing improvements in the existing fatigue rules of the code. Nevertheless, the explicit quantification of safety factors and uncertainties in fatigue is an extremely difficult task to perform for fatigue analyses without a comparison to the operating experience or in relation to another code or standard. Historically, the approach of the code in fatigue has indeed been to add conservatism at each step of the analyses which has resulted in a difficult quantification of the overall safety margin in the analyses. To fulfill its mission, the working group has deemed necessary to lead a benchmark with the EN-13445-3 standard given its wide use through other industries. Two cases were identified: either the comparison with EN-13445-3 is possible and in this case, the identification of safety factors and uncertainties is performed in relation to this standard; either the comparison is not possible, in which case the overall conservatism of the RCC-M code is evaluated in relation with operating experience, test results, literature, etc... This paper aims at describing the overall work of the group and focuses more specifically on the results obtained through the benchmark with the EN-13445-3 standard.


Neft i gaz ◽  
2020 ◽  
Vol 5 (119) ◽  
pp. 41-54
Author(s):  
N.G. MATLOSHINSKIY ◽  
◽  
R.N. MATLOSHINSKIY ◽  

Modern integrated interpretation of borehole and seismic data allows solving a wide range of problems based on the construction of reliable conceptual geological models of the studied areas. The total correlation of seismic horizons allows us to consider the studied section in all its details with the maximum use of seismic information and to ensure its objective comparison with well data. This approach is especially important for the purposeful study of the prospects for oil and gas potential, both in structural traps and non-structural traps, on the one hand, and the construction of objective geostatic models, on the other


2001 ◽  
Vol 80 (1) ◽  
pp. 33-52 ◽  
Author(s):  
K.W. Glennie

AbstractOnce the great size of the Groningen Field was fully realized late in 1963, exploration in the southern North Sea was a natural development as the reservoir bedding dipped westward. The origin of that bedding was not certain, one possibility, dune sands, led immediately to a program of desert studies.Licensing regulations for Netherlands waters were not finalized until 1967, offshore exploration beginning with the award of First Round licenses in March 1968. In the UK area, the Continental Shelf Act came into force in May 1964, paving the way for offshore seismic, the first well being spudded late in that year. The first two wells were drilled on the large Mid North Sea High; both were dry, the targeted Rotliegend sandstones being absent. Then followed a series of Rotliegend gas discoveries, large and small, west of Groningen, so that by the time exploration began in Netherlands waters the UK monopoly market was saturated and exploration companies were already looking north for other targets including possible oil.The Rotliegend was targeted in the earliest wells of the UK central North Sea even though there had already been a series of intriguing oil shows in Chalk and Paleocene reservoirs in Danish and Norwegian waters. These were followed early in 1968 by the discovery of gas in Paleocene turbidites at Cod, near the UK-Norway median line. The first major discovery was Ekofisk in 1969, a billion-barrel Maastrichtian to Danian Chalk field. Forties (1970) confirmed the potential of the Paleocene sands as another billion barrel find, while the small Auk Field extended the oil-bearing stratigraphy down to the Permian. In 1971, discovery of the billion-barrel Brent field in a rotated fault block started a virtual ‘stampede’ to prove-up acreage awarded in the UK Fourth Round (1972) before the 50% statutory relinquishment became effective in 1978.Although the geology of much of the North Sea was reasonably well known by the end of the 1970s, new oil and gas reservoirs continued to be discovered during the next two decades. Exploration proved the Atlantic coast of Norway to be a gas and gas-condensate area. The stratigraphiC range of reservoirs extended down to the Carboniferous (gas) and Devonian (oil), while in the past decade, forays into the UK Atlantic Margin and offshore Ireland met with mixed success. During this hectic activity, Netherlands exploration confirmed a range of hydrocarbon-bearing reservoirs; Jurassic oil in the southern Central Graben, Jurassic-Cretaceous oil derived from a Liassic source mainly onshore and, of course, more gas from the Rotliegend. German exploration had mixed fortunes, with no commercial gas in the North Sea and high nitrogen content in Rotliegend gas in the east. Similarly in Poland, where several small Zechstein oil fields were discovered, the Rotliegend gas was nitrogen rich. The discovery of some 100 billion barrels of oil and oil equivalent beneath the waters of the North Sea since 1964 led to an enormous increase in geological knowledge, making it probably the best known area of comparable size in the World. The area had a varied history over the past 500 million years: platete-tonic movement, faulting, igneous activity, climatic change, and deposition in a variety of continental and marine environments, leading to complex geometrical relationships between source rock, reservoir and seal, and to the reasons for diagenetic changes in the quality of the reservoir sequences. Led by increasingly sophisticated seismic, drilling and wireline logging, and coupled with academic research, the North Sea developed into a giant geological laboratory where ideas were tested and extended industry-wide.


2021 ◽  
pp. 4-10
Author(s):  
B.S. Aslanov ◽  
◽  
A.I. Khuduzade ◽  
R.A. Asgerova ◽  
Yu.F. Ismailzade ◽  
...  

Via geological-geophysical surveys carried out on the north-east border of Yevlakh-Aghjabedy downfold in the second half of the last century, the oil-gas bearing content of deeply-immersed Mesozoic horizons of Upper Cretaceous, as well as shallow layers of Paleogene and Miocene has been defined. Oil-gas bearing Productive Series have been discovered within Muradkhanly, Zardab, Shykhbaghy and Jafarli structures, which belong to Zardab-Muradkhanly-Jafarli belt. Oil-gas reservoirs are lithologically associated mainly with fractured superfusive and carbonate rocks of Upper Cretaceous, as well as sedimentary-volcanogenic rocks of Middle Eocene and partially terrigenic collectors of Maikop-Chokrak, which are layer-arch type of trap. Some researchers came to the conclusion that within favorable geological circumstances on the north-east border of the downfold, collectors of Mesozoic sediments may contain industrial oil and gas deposits as well. To that end, recently the major capacity of exploration drilling and geoexploration was focused within Yevlakh-Aghjabedy downfold, where Mesozoic structures are widespread alongside with Paleogen-Miocene sediments. Deep structural-tectonic framework and oil-gas bearing content both on south-west and north-east slopes of the downfold was specified via the results of conducted works. It was defined that by hydrocarbon saturation, north-west and south-east slopes sharply differ from each other both in the view of structural-tectonic and oil-gas bearing capacity, probably associated with various cycles of folding of Cenozoic and Mesozoic ages.


2021 ◽  
Vol 18 (2) ◽  
pp. 198-222
Author(s):  
Peter Merrington ◽  
Matthew Hanchard ◽  
Bridgette Wessels

This article questions the variety of film exhibition in four English regions. While a regional and national frame is the focus of cultural policy in relation to film audience development in the UK, our analysis examines relational, localised and sub-regional film cultures in order to understand how differing levels of film exhibition influence people's sense of place. This is framed within a discussion of cultural inequality more generally. In the UK, questions of engagement with different types of film exhibition have gained greater prominence recently, but there has been limited attention paid to how audiences understand their geographic relationship with film exhibition. Drawing on 200 semi-structured, qualitative interviews with a wide range of film viewers across four English regions, the North East, North West, South West and Yorkshire and the Humber, we assess perceptions of film exhibition in these regions. In doing so, we characterise five different modes of place in relation to the breadth of film exhibition, from distinctive film cities to mainstream multiplex towns. In particular, we focus on how access to film is simultaneously narrated through both localised proximity to cinemas of different types and virtual access to film through online platforms. This work provides further evidence of the uneven provision of diverse film in England but shows how film audiences relationally interpret their engagement within film as a cultural form.


2002 ◽  
Vol 8 (2-3) ◽  
pp. 206-208
Author(s):  
V.G. Osadchyi ◽  
◽  
O.A. Prykhod'ko ◽  
I.I. Hrytsyk ◽  
◽  
...  

Author(s):  
A., C. Prasetyo

Overpressure existence represents a geological hazard; therefore, an accurate pore pressure prediction is critical for well planning and drilling procedures, etc. Overpressure is a geological phenomenon usually generated by two mechanisms, loading (disequilibrium compaction) and unloading mechanisms (diagenesis and hydrocarbon generation) and they are all geological processes. This research was conducted based on analytical and descriptive methods integrated with well data including wireline log, laboratory test and well test data. This research was conducted based on quantitative estimate of pore pressures using the Eaton Method. The stages are determining shale intervals with GR logs, calculating vertical stress/overburden stress values, determining normal compaction trends, making cross plots of sonic logs against density logs, calculating geothermal gradients, analyzing hydrocarbon maturity, and calculating sedimentation rates with burial history. The research conducted an analysis method on the distribution of clay mineral composition to determine depositional environment and its relationship to overpressure. The wells include GAP-01, GAP-02, GAP-03, and GAP-04 which has an overpressure zone range at depth 8501-10988 ft. The pressure value within the 4 wells has a range between 4358-7451 Psi. Overpressure mechanism in the GAP field is caused by non-loading mechanism (clay mineral diagenesis and hydrocarbon maturation). Overpressure distribution is controlled by its stratigraphy. Therefore, it is possible overpressure is spread quite broadly, especially in the low morphology of the “GAP” Field. This relates to the delta depositional environment with thick shale. Based on clay minerals distribution, the northern part (GAP 02 & 03) has more clay mineral content compared to the south and this can be interpreted increasingly towards sea (low energy regime) and facies turned into pro-delta. Overpressure might be found shallower in the north than the south due to higher clay mineral content present to the north.


Sign in / Sign up

Export Citation Format

Share Document