Growth and Sexual Dimorphism in the Dibbler, Parantechinus apicalis (Marsupialia, Dasyuridae)

1999 ◽  
Vol 21 (2) ◽  
pp. 239
Author(s):  
H. Mills ◽  
Z. German R ◽  
C. Lambert ◽  
P. Bradley M

Sexual dimorphism in animals has been recognised as being associated with particular breeding strategies or mating systems since Darwin's Origin of Species. Frequently, in polygamous situations, females express a variety of attributes to attract males, and males compete with each other for access to females. This produces different selective pressures in each sex, which in tum produces differing morphologies (Leigh 1995). Thus, the emphasis of morphological studies of sexual differences tends to focus on adults and not the growth patterns that generate those differences. Growth patterns in marsupials have been shown to be variable between species (Gemmell and Hendrikz 1993). Previous studies of dasyurid species in captivity concluded that the onset of dimorphism occurs prior to or during weaning (Whitford, Fanning and White 1982; Williams and Williams 1982), but wild animals are not sexually dimorphic until after weaning (Soderquist 1995). These studies have generally examined the growth rates of males and females and the timing of the onset of sexual dimorphism, but little attention has been focussed on how the differences between the sexes are generated.

2018 ◽  
Vol 5 (5) ◽  
pp. 172470 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Adam J. Munn ◽  
Phillip G. Byrne

Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse ( Mus musculus ) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 151 ◽  
Author(s):  
Tomas Vendl ◽  
Vaclav Stejskal ◽  
Radek Aulicky

Although it is known that separate insect body structures may be asymmetrical within one species, the different functional asymmetries within a single organ as a result of differential selective regimes have not been described. Based on microscopic measurements and SEM photography, we examined the size, shape and asymmetry of the mandibular structures of males and females of the sexually dimorphic broad-horned flour beetle, Gnatocerus cornutus (Tenebrionidae, Coleoptera). It was found that sexual dimorphism only manifests in certain outgrowth parts (horns) of male mandibles, while the remaining cutting parts of the mandibles hold identical morphologies for both sexes. A more interesting finding—since this is the first published case of dual functionally selected asymmetry in an identical arthropod organ—was that the cutting part of the male mandible exhibited directional asymmetry, whereas the outgrowth horn part of the mandible showed a high degree of symmetry. Moreover, there was no relationship between the size and asymmetry of horns. The results indicate different regulatory mechanisms of sexually selected combative horns and the food-functional, more conservative (constrained by hard food and adult long life) cutting parts of mandibles.


2020 ◽  
Vol 101 (4) ◽  
pp. 951-957
Author(s):  
Jeremy S Morris ◽  
Nala Rogers ◽  
Alan R Rogers ◽  
David R Carrier

Abstract Sexual dimorphism evolves as a response to different selective pressures on males and females. In mammals, sexual selection on traits that improve a male’s ability to compete for access to mates is a common cause of sexual dimorphism. In addition to body mass, adaptations in specific components of the musculoskeletal system that increase strength, stability, and agility, may improve male fighting performance. Here we test the hypotheses that males, when compared to females, are more specialized for physical competition in their skeletal anatomy and that the degree of this sexual dimorphism increases with the intensity of male–male competition. In three species of voles (Cricetidae: Arvicolinae: Microtus), we found partial support for these hypotheses. Male-biased sexual dimorphism in a set of functional indices associated with improved fighting performance was identified in the postcranial anatomy. This dimorphism was greatest in the polygynous Microtus californicus, absent in the monogamous M. ochrogaster, and intermediate in the promiscuous or socially flexible M. oeconomus. However, in the skull, we found results opposite to our predictions. Females had larger skulls relative to overall skeletal size than did males. This may be associated with selection for increased food processing efficiency, which should be highly important because of the compounding effects of increased caloric requirements during gestation and lactation, and the generally low-quality diet of voles. In addition, larger heads in females may be associated with selection for greater digging ability or for defending offspring. These results suggest disparate selective pressures on the postcranial skeletons and skulls of male and female voles.


1996 ◽  
Vol 199 (10) ◽  
pp. 2297-2306 ◽  
Author(s):  
S Kajiura ◽  
T Tricas

Cartilaginous fishes continuously replace their teeth throughout their life (polyphyodonty) and often show a sexually dimorphic dentition that was previously thought to be an invariant sex character. Radial vector analysis of tooth shape in the polyphyodontic stingray Dasyatis sabina across a consecutive 24 month period shows a stable molariform morphology for females but a periodic shift in male dentition from a female-like molariform to a recurved cuspidate form during the reproductive season. The grip tenacity of the male dentition is greater for the cuspidate form that occurs during the mating season than for the molariform dentition that occurs during the non-mating season. Dental sexual dimorphism and its sex-dependent temporal plasticity probably evolved via polyphyodontic preadaptation under selective pressures on both sexes for increased feeding efficiency and sexual selection in males to maximize mating success. These phenomena are important considerations for the identification and classification of cartilaginous fishes and possibly other polyphyodontic vertebrates in the fossil record.


2014 ◽  
Vol 7 (1) ◽  
pp. 42-45 ◽  
Author(s):  
Mark C. Belk ◽  
Scott Bird ◽  
Mehmet Cemal Oguz ◽  
Jerald B. Johnson

The cyprinid fish Gila atraria Girard (Utah chub) is generally considered a sexually monomorphic species. However, prior observations revealed variation in pelvic fin length within populations that appears sexually dimorphic. We measured the relative pelvic fin length of 419 sexually mature Utah chub from 8 different locations to determine the magnitude and generality of this apparent dimorphism. Pelvic fin length in G. atraria differs between sexes by about 10% on average; males have longer pelvic fins than females. The dimorphism is general across all locations, but it is not related to body size. Magnitude of the dimorphism varies by predation environment – the difference between males and females is slightly greater in low predation environments. We find no evidence for an adaptive function for this dimorphism; however, it does provide an efficient mechanism for determining sex without dissection.


2017 ◽  
Author(s):  
Adam B. Roddy ◽  
Justin van Blerk ◽  
Jeremy J. Midgley ◽  
Adam G. West

AbstractBecause of the importance of reproduction in plant life history, the physiological costs of reproduction often influence vegetative structure and function. In dioecious species, these effects can be quite obvious, as different costs of male and female reproductive functions are entirely separated among different individuals in a population. In fire-prone ecosystems, in which recruitment is driven by fire frequency, many plants will maintain their seeds in the canopy, only to be released after a fire. The dioecious genus Leucadendron is a notable case of this, as females can maintain their seed cones for years, and, even more interestingly, species in the genus differ substantially in the degree to which males and females are sexually dimorphic. A recent study (Harris and Pannell 2010) argued that the hydraulic costs of maintaining seed cones for many years would effect the degree of sexual dimorphism among species. However, this assumed that shoot hydraulic architecture would be related to traits exhibiting sexual dimorphism. Here we explicitly test this hypothesis on two Leucadendron species. We found (1) that metrics of branch ramification used in the previous study to characterize dimorphism do not conform to known scaling relationships and (2) that sexual dimorphism in shoot architecture has no effect on hydraulic efficiency. Both of these results seriously question the pattern described by Harris and Pannell (2010) and suggest that the hydraulic costs of prolonged seed retention in Leucadendron do not significantly affect branch architecture.


Author(s):  
Hang Chen ◽  
Qin Lu ◽  
Xiaoming Chen ◽  
Xiaofei Ling ◽  
Pengfei Liu ◽  
...  

Scale insects are hemimetabolous, showing “incomplete” metamorphosis and no true pupal stage. Ericerus pela, commonly known as the white wax scale insect (hereafter, WWS), is a wax-producing insect found in Asia and Europe. WWS displays dramatic sexual dimorphism, with notably different metamorphic fates in males and females. Males develop into winged adults, while females are neotenic and maintain a nymph-like appearance, which are flightless and remain stationary. Here we report the de novo assembly of the WWS genome with its size of 638.30 Mb (69.68Mb for scaffold N50) by PacBio sequencing and Hi-C. From these data, we constructed a robust phylogenetic analysis of 24,923 gene families from 16 representative insect genomes, which indicates that holometabola evolved from incomplete metamorphosis insects in the Late Carboniferous, about 50 million years earlier than previously thought. To study the distinct development of males and females, we analyzed the methylome landscape in either sex. Surprisingly, WWS displayed high levels of methylation (4.42% for males) when compared to other insects. We observed differential methylation patterns for genes involved in steroid and sesquiterpenoids production as well as related fatty acid metabolism pathways. We show here that both males and females exhibit distinct titer profiles for ecdysone, the principal insect steroid hormone, and juvenile hormone (a sesquiterpenoid), suggesting that these hormones are the primary drivers of sexually dimorphic features. Our results provide a comprehensive genomic and epigenomic resource of scale insects that provide new insights into the evolution of metamorphosis and sexual dimorphism in insects.


2007 ◽  
Vol 67 (4) ◽  
pp. 707-713 ◽  
Author(s):  
V De Conto ◽  
R Cerqueira

The reproduction, development and growth of Akodon lindberghi were studied in captivity. The colony was derived from animals captured in Simão Pereira, Minas Gerais state, which represents a new area of geographical distribution known for this species. Twelve males and twelve females were crossed, producing 144 young in 53 litters. Post-partum oestrus was observed and gestation length was estimated in 23 days. Litter size ranged from 1 to 4 with a mean of 2.72 (SD = 0.97, n = 53) and modal size of 3. Sexual dimorphism was neither present in body mass at birth nor at weaning. There was a significant negative correlation between litter size and mass at birth or weaning. Permanent emergence of adult external appearance occurred at 15 days. Puberty for males and females was 43 and 42 days, respectively, and the first fecundation event for two females was recorded at 47 and 54 days of age. The weight growth was described by fitting a Gompertz model. No significant difference was found in any parameter of growth curves for males and females. Measurements (head-body, tail, hind foot and internal and external ear lengths) obtained for adult individuals also did not reveal the presence of sexual dimorphism.


Author(s):  
Nancy L Staub

Abstract While sexual dimorphism has long received special attention from biologists, derived monomorphism, the condition in which both males and females express similar derived features, has been less well studied. Historically, the appearance of “male-like” features in females has been explained by the genetic correlation between the sexes. Recent work emphasizes the importance of studying the independent selective forces on both females and males to understand sexual dimorphism. Sexual dimorphism and derived monomorphism in the genus Aneides are examined in light of predictions of social selection. Aneides hardii shows the greatest degree of sexual dimorphism in snout-vent length and head width, with the other species of Aneides less sexually dimorphic. This reduced dimorphism, however, is not a return to an ancestral monomorphic state, but rather exemplifies derived monomorphism because females express traits that were limited in expression to males of ancestral species. Instead of calling these “male-typical” traits in females, I suggest the term “derived monomorphic” traits, as these traits are typical in these females and “derived monomorphic” can apply to both sexes. Increased attention to studying the patterns and ecological significance of derived monomorphism will shed light on the underlying selective forces, including sexual selection, on both females and males.


2021 ◽  
Author(s):  
Mathias Scharmann ◽  
Anthony G Rebelo ◽  
John R Pannell

AbstractThe males and females of many dioecious plants differ in morphological (Dawson and Geber 1999; Barrett and Hough 2013; Tonnabel et al. 2017), physiological (Juvany and Munné-Bosch 2015), life-history (Delph 1999), and defence traits (Cornelissen and Stiling 2005). Ultimately, such sexual dimorphism must largely be due to differential gene expression between the sexes (Ellegren and Parsch 2007), but little is known about how sex-biased genes are recruited and how their expression evolves over time. We measured gene expression in leaves of males and females of ten species sampled across the South African Cape genus Leucadendron, which shows repeated changes in sexual dimorphism and includes the most extreme differences between males and females in flowering plants (Midgley 2010; Barrett and Hough 2013; Tonnabel et al. 2014). Even in the most dimorphic species in our sample, fewer than 2% of genes showed sex-biased gene expression (SBGE) in vegetative tissue, with surprisingly little correspondence between SBGE and vegetative dimorphism across species. The identity of sex-biased genes in Leucadendron was highly species-specific, with a rapid turnover among species. In animals, sex-biased genes often evolve more quickly than unbiased genes in their sequences and expression levels (Ranz et al. 2003; Khaitovich et al. 2005; Ellegren and Parsch 2007; Voolstra et al. 2007; Harrison et al. 2015; Naqvi et al. 2019), consistent with hypotheses invoking rapid evolution due to sexual selection. Our phylogenetic analysis in Leucadendron, however, clearly indicates that sex-biased genes are recruited from a class of genes with ancestrally rapid rates of expression evolution, perhaps due to low evolutionary or pleiotropic constraints. Nevertheless, we also find evidence for adaptive evolution of expression levels once sex bias evolves. Thus, although the expression of sex-biased genes is ultimately responsive to selection, high rates of expression evolution might usually predate the evolution of sex bias.


Sign in / Sign up

Export Citation Format

Share Document