Dietary fatty acids affect the growth, body composition and performance of post-weaning gilt progeny

2014 ◽  
Vol 54 (3) ◽  
pp. 329 ◽  
Author(s):  
S. J. Wilkinson ◽  
J. A. Downing ◽  
P. C. Thomson ◽  
R. E. Newman

Gilt progeny are born lighter, have lower weaning weights and require more medication throughout their life time than do sow progeny. Therefore, strategies to improve their post-weaning performance are of importance to pork producers. Dietary fatty acids have been shown to be potent modulators of physiological processes. Studies in other species have reported that dietary fatty acids affect in utero development, cognitive behaviour, immune system function, carcass composition as well as feed efficiency of offspring. However, little information is available that details their use in gilt progeny and when fed throughout their lifetime. In the present study, two experiments were conducted to investigate the effects of feeding three different types of fat to gilts and their progeny on the growth, body composition and performance post-weaning. Diets were enriched with either saturated fatty acids (SFA; tallow), or n-3 (fish-oil extracts) or n-6 (safflower oil) polyunsaturated fatty acids (PUFA) and were fed to gilts through gestation and to their progeny post-weaning. In Experiment 2, half of the female progeny from n-3 and n-6 PUFA litters were fed SFA post-weaning. For both studies, there was no significant difference in weaning bodyweights. However, in Experiment 1, pigs fed n-6 PUFA diets post-weaning were significantly lighter 7 days post-weaning than were pigs fed SFA- and n-3 PUFA-enriched diets. Despite feed intake of n-6 PUFA-fed pigs becoming comparable to that of the other groups during the finisher period, bodyweight for this group remained significantly lower than that of the other groups at the conclusion of the experiment. No effect of dietary fatty acid type on the carcass composition of finisher pigs, as determined by computed tomography, was found. The results of Experiment 2 showed that feeding pigs n-6 PUFA diets post-weaning through to slaughter significantly compromised their growth, being in agreement with those from Experiment 1. Feed consumption for this group was significantly less during the post-weaning and the finisher periods. However, pigs from n-6 PUFA litters that were fed SFA diets post-weaning showed no compromise in growth and performance and were comparable to pigs from the other treatment groups. During the grower and finisher periods, pigs fed n-6 PUFA diets had a significantly higher rate of mortality that was as much as 13 times that of pigs fed SFA diets. Pigs from n-6 PUFA litters that were fed SFA diets post-weaning were not affected in this manner. The results of the current study showed that feeding diets enriched with n-6 PUFA to pigs significantly compromised their growth and performance and that this fatty acid type may also have negative health effects with prolonged consumption. The data suggested that the type of fatty acid used in pig diets may be an important consideration for nutritionists when formulating diets to optimise post-weaning growth and performance.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1038-1038
Author(s):  
Michael Miklus ◽  
Pedro Prieto ◽  
Cynthia Barber ◽  
Robert Rhoads ◽  
Samer El-Kadi

Abstract Objectives The objectives of this study were to determine the effect of 2’fucosyllactose (2’FL) and fat blends on growth, body composition and fatty acid profile of the liver and brain using the neonatal pig as a model for the human infant. Methods Pigs (3 d old) were randomly assigned to either: 1. control, 2. Palm Olein (PO) fat blend – Low 2'-FL, 3. PO – High 2'-FL, 4. High oleic acid (HO) – Low 2'-FL, 5. HO FB – High 2'-FL, 6. PO FB – GLA, or 7. kept with their sows. Pigs in groups 1 to 6 received 250 ml·kg−1·d−1 of formula in 5 equal meals for 15 d. On day 14 of the study, groups 1–6 received intraperitoneal E. coli LPS challenge at 100 µg·kg−1 weight. Results Body weight was greater for piglets fed by sows than those in the other groups (P < 0.001). In addition, % fat and bone mineral content were higher in the sow-fed group while lean % was less sow-fed piglets (group 7) compared with those in the other groups (P < 0.05). Only longissimus weight expressed as a % of body weight, was greater for group 7 compared with all other groups (P < 0.001). Soleus, semitendinosus, brain, heart and spleen weights as a % of body weight were similar across all groups. However, liver weight as a % of body weight was greater in groups 1–6 (3.7%) compared with group 7 (2.8%; P < 0.001). The proportion of brain 16:1 fatty acid was less (0.83%) for groups 1–6 than for group 7 pigs (1.08%; P < 0.0001). The proportion of 20:3 N6 was greatest (0.66%) for group 3 compared with groups 1 and 4 (0.55%; P < 0.05). In addition, the proportion of 20:5 N3 was greatest (0.12%) for group 3 compared with groups 1 and 7 (0.07%; P < 0.05). The proportion of liver 16:1, 18:0, and 18:1 cis-11 fatty acids were greater for group 7 (2.3, 23, 2.2%) than groups 1–6 (0.2, 20, 1.2%; P < 0.0001). Conversely, the contribution of 14:0, 18:1 cis-9, 18:3 N6 cis-6,9,12, and 22:6 N3 were greater for pigs in groups 1–6 (1.3, 0.6, and 14, 7.8%) compared with those in group 7 (0.5, 8.5, 0.2 and 3.5%; P < 0.0001). Conclusions Our data suggest that feeding 2’fucosyllactose had no effect on the body weight gain and composition in neonatal pigs. Our data also suggest that dietary fatty acids have a greater effect on liver than on brain fatty acid composition. Funding Sources Funding for the work was provided by Perrigo Nutritionals, LLC.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arthur Rocha-Gomes ◽  
Juliana Dara Silva ◽  
Thais Angélica Morais ◽  
Amanda Rosa da Costa Ferreira ◽  
Viviane Cristina Costa ◽  
...  

Purpose The purpose of this study is to evaluate the nutritional effects in Wistar rats of supplementation with stand-alone saturated fatty acid (SFA) or monounsaturated fatty acid (MUFA), the replacement of SFA by MUFA and the combination of both (SFA + MUFA) over a long period of time (13 weeks). Design/methodology/approach In total, 30 Wistar rats were used and randomly assigned to receive (n = 6): control – lab chow; lard (L20%) – lab chow with added lard (20%); olive oil (O20%) – lab chow with added olive oil (20%); lard replacement with olive oil (L20% –O20%) – during six weeks lab chow with added lard (20%) replaced by lab chow with added olive oil (20%) given during the past seven weeks of the trial; lard combination with olive oil (L10% + O10%) – lab chow with added lard (10%) and olive oil (10%). Food and caloric intake, weight gain, food and energy efficiency, body mass index, bone mineral composition and blood biochemistry were evaluated. Findings All diets with added fatty acids showed higher energy intake (p < 0.001), weight gain (p = 0.01), accumulation of adipose tissue (p = 0.02) and food and energy efficiency (p = 0.01) compared to the control group. All groups exhibited higher levels of blood triglycerides compared to the control group (p = 0.02). In addition, the L10% + O10% group developed hyperglycemia (p < 0.001); the L group showed higher amounts of non- high density lipoprotein (HDL-c) (p = 0.04); and the L20%−O20% group exhibited high levels of the triglyceride/HDL-c ratio (p = 0.04) in relation to the control. Originality/value These results indicate that regardless of the fatty acid type, consumption in large quantities of fatty acids for long periods of time can cause obesity and dyslipidemia.


2020 ◽  
Vol 16 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Hadi Emamat ◽  
Zahra Yari ◽  
Hossein Farhadnejad ◽  
Parvin Mirmiran

Recent evidence has highlighted that fat accumulation, particularly abdominal fat distribution, is strongly associated with metabolic disturbance. It is also well-recognized that the metabolic responses to variations in macronutrients intake can affect body composition. Previous studies suggest that the quality of dietary fats can be considered as the main determinant of body-fat deposition, fat distribution, and body composition without altering the total body weight; however, the effects of dietary fats on body composition have controversial results. There is substantial evidence to suggest that saturated fatty acids are more obesogen than unsaturated fatty acids, and with the exception of some isomers like conjugate linoleic acid, most dietary trans fatty acids are adiposity enhancers, but there is no consensus on it yet. On the other hand, there is little evidence to indicate that higher intake of the n-3 and the n-6 polyunsaturated fatty acids can be beneficial in attenuating adiposity, and the effect of monounsaturated fatty acids on body composition is contradictory. Accordingly, the content of this review summarizes the current body of knowledge on the potential effects of the different types of dietary fatty acids on body composition and adiposity. It also refers to the putative mechanisms underlying this association and reflects on the controversy of this topic.


2006 ◽  
Vol 2 (9) ◽  
pp. 494-502 ◽  
Author(s):  
Michael B Austin ◽  
Tamao Saito ◽  
Marianne E Bowman ◽  
Stephen Haydock ◽  
Atsushi Kato ◽  
...  

2014 ◽  
Vol 116 (5) ◽  
pp. 584-595 ◽  
Author(s):  
Deiene Rodríguez-Barreto ◽  
Salvador Jerez ◽  
Juana R. Cejas ◽  
M. Virginia Martin ◽  
Nieves G. Acosta ◽  
...  

1996 ◽  
Vol 1996 ◽  
pp. 155-155
Author(s):  
M S Redshaw ◽  
J Wiseman ◽  
D J A Cole ◽  
J D Wood ◽  
M Enser ◽  
...  

It is well established that the fatty acid combustion of adipose issue in pigs (non-ruminants) may be manipulated by changes in the fatty acid profile of the diets. The objective of this program of work was to quantify the responses of adipose depots of finishing pigs to changes in the level and profile of dietary fatty acids and to relate these changes to the sensory quality of meat as determined by taste panel.


2009 ◽  
Vol 81 (3) ◽  
pp. 453-466 ◽  
Author(s):  
Cláudia M. Oller do Nascimento ◽  
Eliane B. Ribeiro ◽  
Lila M. Oyama

Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-α, plasminogen activator inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary fatty acids affect white adipose tissue metabolism and secretory functions.


2003 ◽  
Vol 81 (12) ◽  
pp. 1285-1292 ◽  
Author(s):  
Takefumi Hattori ◽  
Akira Ohta ◽  
Masayuki Itaya ◽  
Mikio Shimada

We have investigated growth of ectomycorrhizal (ECM) fungi (i.e., 55 strains of 32 species in 15 genera) on saturated (palmitate), monounsaturated (oleate), diunsaturated (linoleate), triunsaturated (linolenate) fatty acids, and the triacylglyceride of oleate (triolein) lipid to elucidate an ability to utilize the fatty acids and lipid as a carbon source for growth. Relative utilization ratios (URs, %) based on mycelial growth on glucose suggest that ECM fungi belonging to the family Thelephoraceae have an ability to utilize palmitate. On the other hand, ECM fungi in the genus Laccaria can utilize at least either palmitate or oleate. Furthermore, Hygropharus russula grows on palmitate, oleate, and slightly on triolein. Lactarius chrysorrheus grows only on palmitate. These fatty-acid- and lipid-utilizing fungi may be promising as model fungi for further elucidation of the metabolic ability to utilize the fatty acids and lipid as a carbon source. On the contrary, the fungi in the genus Suillus were shown to scarcely utilize the fatty acids and lipid. Furthermore, most ECM fungi did not grow on either linoleate or linolenate.Key words: carbon source, ectomycorrhizal fungi, fatty acid, lipid, mycelial growth.


Sign in / Sign up

Export Citation Format

Share Document