Variation of greenhouse gas emissions and identification of their drivers during the fattening of Belgian Blue White bulls based on a LCA approach

2016 ◽  
Vol 56 (3) ◽  
pp. 322
Author(s):  
Michaël Mathot ◽  
Eric Elias ◽  
Edouard Reding ◽  
Amélie Vanlierde ◽  
Werne Reuter ◽  
...  

Greenhouse gas emission intensity (GHGI; kilograms carbon dioxide equivalents/kilograms liveweight gain) have to be reduced so as to limit the impact of human activities on global warming while furnishing food to human. In this respect, performances of 654 Belgian Blue double-muscled bulls (BBdm) during their fattening phase were recorded. On this basis, their greenhouse gas emissions were modelled to estimate variation in GHGI and investigate mitigation options at that level. The relevance of theses option is discussed, taking into account the whole life and production system scales. Large variations (mean (s.d.)) were observed (from 7.2 (0.4) to 10.0 (0.7) kg carbon dioxide equivalents/kg liveweight gain) for, respectively, the 1st- and 4th-quantile groups defined for GHGI. Early culling, low liveweight and age at start of the fattening phase of the bulls would lead to a reduction of GHGI. Nevertheless, more than 32% of the variation remained unexplained. However, decision leading to reduction of GHG intensity at this stage of the life may be compensated in the early stage of BBdm. Attention is drawn on the necessity to encompass the whole life of BBdm for investigating mitigation options and on the sensitivity of the results on models and methodological choices.

2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2021 ◽  
Vol 5 (4) ◽  
pp. 26-35
Author(s):  
Ayanda Pamella Deliwe ◽  
Shelley Beryl Beck ◽  
Elroy Eugene Smith

Objective – This paper sets out to assess perceptions of food retailers regarding climate change, greenhouse gas emission and sustainability in the Nelson Mandela Bay region of South Africa. The primary objective of this study is to investigate the food retailers’ greenhouse gas emissions strategies. Climate change catastrophic potential and the harmful effect that it has had on the community and businesses has led to it being given attention from social media and in literature. Methodology/Technique – This paper covered a literature review that provided the theoretical framework. The empirical study that was carried out included self-administered questionnaires which were distributed to 120 food retailers who were selected from the population using convenience sampling. Findings - The results revealed that most of the respondents were neutral towards the impact of operational factors regarding GHG emission in the food retail sector. Novelty - There is limited research that has been conducted among food retailers from the designated population. The study provided guidelines that will be of assistance to food retailers when dealing with climate change and greenhouse gas emissions impact in the food retail sector. Type of Paper: Empirical. JEL Classification: L66, Q54, Q59. Keywords: Climate Change; Food Retailers; Greenhouse Gas Emissions; Perceptions; Strategies; Sustainability Reference to this paper should be made as follows: Deliwe, A.P; Beck, S.B; Smith, E.E. (2021). Perceptions of Food Retailers Regarding Climate Change and Greenhouse Gas Emissions, Journal of Business and Economics Review, 5(4) 26–35. https://doi.org/10.35609/jber.2021.5.4(3)


2014 ◽  
Vol 3 (2) ◽  
pp. 252 ◽  
Author(s):  
Mohamed Mourad

Because of their high efficiency and low emissions, fuel cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete evaluation must be performed to determine the potential impact of a technology on carbon dioxide (CO2) and greenhouse gases emissions. However, the reduction of CO2 emission from the vehicle became the most important objective for all researches institutes of vehicle technologies worldwide. There interest recently to find unconventional methods to reduce greenhouse gas emission from vehicle to keep the environment clean. This paper offers an overview and simulation study to fuel cell vehicles, with the aim of introducing their main advantages and evaluates their influence on emissions of carbon dioxide from fuel cell vehicle and compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional and fuel cell. The results indicate that the use of fuel cells, and especially fuel cells that consume hydrogen, provide a good attempt for enhancing environment quality and reducing greenhouse gas (GHG) emissions. Moreover, the emission reduction percentage of fuel cell vehicle reaches to 64% comparing to the conventional vehicle. Keywords: Fuel Cell Electric Vehicle, Performance, Simulation, Driving Cycle, CO2 Emissions, Greenhouse Gas Emissions, Fuel Consumption.


2021 ◽  
Author(s):  
Biruk Birhanu Ashenafi

Abstract Over the past couple of decades, we have witnessed a rise in greenhouse gas emissions and widening income inequality that threaten human well-being. Addressing these challenges and ensuring sustainable economic growth becomes a pressing issue for the development policy agendas across Africa. This paper offers an answer for the impact of greenhouse gas emissions on income inequality by taking the most vulnerable region. In doing so, a panel data set from 1981–2015 across 49 countries are used and applied a panel data fixed effect regression and instrumental variable method (IV). We establish s causal relationship and show that greenhouse gas emission widens income inequality. We further cemented our baseline finding using alternative emission indicators typical to the Agrarian society. Our findings shed light on alternative development policy choices to the African continent where the traditional policy prescription does not fit the current dynamics in demography, urbanization, and agricultural practices. Hence, we emphasize the Agriculture Development Lead Industrialization (ADLI) policy that places high importance on transforming the livelihood of the people engaged in agriculture. The approach has proven to unlock the trinity challenge posed by environmental degradation, income inequality, and stagnant economic growth. Indeed, industrialization can be realized through transforming agriculture first. Adding value to agriculture reduces emission, redistributes income, and eventually maintains steady per capita income growth in Africa.


2005 ◽  
Vol 16 (3) ◽  
pp. 21-32 ◽  
Author(s):  
JN Blignaut ◽  
MR Chitiga-Mabugu ◽  
RM Mabugu

This paper discusses the procedures and results of constructing a greenhouse gas (GHG) emissions inventory for South Africa, using the official national energy balance for 1998. In doing so, the paper offers a snapshot of the South African energy supply and demand profile and encompassing greenhouse gas emissions profiles, disaggregated into 40 economic sectors, for the reference year. For convenience, energy supply and use are reported in both native units and terra joule (TJ), while emissions are expressed in carbon dioxide equivalents and reported in giga-gram (Gg). While carbon dioxide makes an overwhelming contribution to global anthropogenic GHG emissions, the inclusion of methane and nitrous oxide offers considerable richness to the analysis of climate change policies. Applying the energy balances, it was possible to compile a comprehensive emissions inventory using a consistent methodology across all sectors of the economy. The inventory allows the economic analyst to model various economic policies either with fuel as an input to production, or the consumption of fuel or the emissions generated during combustion, as a base of the analysis. The dominant role of coal as a source of energy, with a total primary energy supply (TPES) of 3.3 million TJ or 70 per cent of the total TPES, is clearly shown. Emissions from coal combustion (263 783 Gg of carbon dioxide equivalents or 74.7 per cent of total emissions) are henceforth the largest contributor to total emissions, estimated to be 352 932 Gg carbon dioxide equivalents.


2021 ◽  
Author(s):  
Michael Eisen ◽  
Patrick O Brown

We used public data on greenhouse-gas emissions and land use to evaluate the potential impact of eliminating animal agriculture on atmospheric greenhouse gas levels, and global warming potential. We first updated estimates of carbon dioxide, methane, and nitrous oxide emissions from livestock and livestock feed production. We used these data, along with recent estimates of the atmospheric carbon dioxide that could be converted by photosynthesis into perennial biomass on land currently engaged in animal agriculture, to develop models of net anthropogenic emissions under food-system scenarios ranging from business as usual to the complete elimination of animal agriculture. We then used simple simulations to project atmospheric levels of these three gases through the end of the century under each scenario. Using cumulative differences in radiative forcing as a measure of the impact of different diets, we found that a gradual transition over the next 15 years to a plant-only diet would have the same effect through the rest of the century as an annual reduction of 28 Gt of CO2 emissions. This would effectively negate 56 percent of global emissions at the current rate of 50 Gt CO2eq per year, with a net negation of 2,200 gigatonnes of CO2 emissions by the year 2100. The climate benefits would accrue rapidly - most in the first few decades, effectively pausing greenhouse-gas accumulation for 30 years. These results establish the replacement of animal agriculture as by far the most powerful option in our arsenal of climate-defense strategies, especially given the urgency of the climate threat. How to orchestrate such a shift to maximize its beneficial environmental, public health, food security, economic and social consequences and minimize potential harms should therefore be at the center of climate policy discussions.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012015
Author(s):  
J Budajová

Abstract In general, we can call the carbon footprint as emissions of gases that affect the Earth’s climate, while being used by humans. The impact of construction, building materials, structures, or the overall life cycle of a building on the environment is great. Sustainable architecture is gaining more prominence, using reduced carbon footprint. Today’s construction industry is increasingly moving towards sustainable construction, which is constantly being formed. The great weather fluctuations that take place from day to day are forcing us to reduce our greenhouse gas emissions. The global warming potential GWP (global warming potential) caused by these greenhouse gas emissions is increased to carbon dioxide CO2 and expressed as carbon dioxide equivalent CO2eq. Using GWP we can determine the carbon footprint of a product. The aim of this paper is to change the three compositions of the perimeter walls using LCA analysis (life cycle assessment) and to choose the composition that has the best carbon footprint and is therefore more advantageous. The need for a sustainable built environment is urgent due to its positive impact on the environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2008 ◽  
Vol 2008 (6) ◽  
pp. 783-792 ◽  
Author(s):  
Patricia Scanlan ◽  
Holly Elmendorf ◽  
Hari Santha ◽  
James Rowan

Sign in / Sign up

Export Citation Format

Share Document