pH: a promising indicator of feed waste in piggery effluent?

2019 ◽  
Vol 59 (3) ◽  
pp. 581
Author(s):  
Chris Pratt ◽  
Jaye Hill ◽  
Alan Skerman ◽  
Matthew Redding

Feed waste in pork production sheds can amount to substantial economic losses. No simple methods exist to quantify this waste, which commonly ends up in the effluent stream. Monitoring piggery effluent might offer producers a practical alert solution for feed waste losses. We investigated piggery effluent pH as a potential marker of feed waste, given that most feed substrates and breakdown products are acidic whereas effluent is alkaline. To explore this prospective relationship, we constructed simulated effluent streams comprising faeces, urine and feed. These waste components were acquired from a commercial batch grower shed, at four different times over the 12-week growth cycle. In laboratory settings (25°C) we used the collected wastes to simulate the two stages of typical flushing piggery effluent systems: (1) Faeces + urine + feed waste accumulation in flushing channels, and (2) flush water mixing with these wastes in an effluent collection sump. We repeated the exercise for a one-off sampling event at a sow facility. For all events, at the grower and sow facility, the pH of the simulated effluents yielded exponentially decreasing relationships with increasing feed waste level (P < 0.05). For the grower facility we applied each of the four laboratory-derived relationships to the farm’s sump effluent pH, which was measured during each of these sampling events. The predicted feed waste levels were commensurate with estimates of feed waste for the same facility derived from alternative, time intensive approaches reported in other studies. Further work is needed to transition the promising results uncovered here into an alert system to help farmers improve profitability and minimise waste.

2019 ◽  
Vol 67 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Anna Valkó ◽  
András Marosi ◽  
Attila Cságola ◽  
Rózsa Farkas ◽  
Zsuzsanna Rónai ◽  
...  

Enteric viral diseases of swine are one of the most frequent disorders causing huge economic losses in pork production. After the reappearance of an emerging enteropathogen, porcine epidemic diarrhoea virus (PEDV) in Hungary in 2016, an extensive survey was initiated in an attempt to identify diarrhoea-related porcine viruses, including adeno-, astro-, boca-, calici-, circo-, corona-, kobu-, rota- and Torque teno viruses. A total of 384 faecal samples collected during a twoyear period from diarrhoeic and asymptomatic pigs of various ages in 17 farms were screened by conventional and real-time PCR methods. Half of the samples contained at least one examined virus with the dominance of kobuvirus (55.1%) followed by bocaviruses (33.2%) and rotavirus groups A and C together (20.9%), while coronaviruses including PEDV were not found in this set of samples. Statistical analysis showed a highly significant difference (P < 0.0001) in the frequency of single infections compared to mixed ones with the exception of weaned pigs, in which group additionally most viruses were detected. The results of this study suggest that the complexity of this disease may vary with age, which makes the prevention of diarrhoea a challenge, especially in weaned pigs.


2002 ◽  
Vol 70 (11) ◽  
pp. 6273-6283 ◽  
Author(s):  
Rafael A. Garduño ◽  
Elizabeth Garduño ◽  
Margot Hiltz ◽  
Paul S. Hoffman

ABSTRACT When Legionella pneumophila grows in HeLa cells, it alternates between a replicative form and a morphologically distinct “cyst-like” form termed MIF (mature intracellular form). MIFs are also formed in natural amoebic hosts and to a lesser extent in macrophages, but they do not develop in vitro. Since MIFs accumulate at the end of each growth cycle, we investigated the possibility that they are in vivo equivalents of stationary-phase (SP) bacteria, which are enriched for virulence traits. By electron microscopy, MIFs appeared as short, stubby rods with an electron-dense, laminar outer membrane layer and a cytoplasm largely occupied by inclusions of poly-β-hydroxybutyrate and laminations of internal membranes originating from the cytoplasmic membrane. These features may be responsible for the bright red appearance of MIFs by light microscopy following staining with the phenolic Giménez stain. In contrast, SP bacteria appeared as dull red rods after Giménez staining and displayed a typical gram-negative cell wall ultrastructure. Outer membranes from MIFs and SP bacteria were equivalent in terms of the content of the peptidoglycan-bound and disulfide bond cross-linked OmpS porin, although additional proteins, including Hsp60 (which acts as an invasin for HeLa cells), were detected only in preparations from MIFs. Proteomic analysis revealed differences between MIFs and SP forms; in particular, MIFs were enriched for an ∼20-kDa protein, a potential marker of development. Compared with SP bacteria, MIFs were 10-fold more infectious by plaque assay, displayed increased resistance to rifampin (3- to 5-fold) and gentamicin (10- to 1,000-fold), resisted detergent-mediated lysis, and tolerated high pH. Finally, MIFs had a very low respiration rate, consistent with a decreased metabolic activity. Collectively, these results suggest that intracellular L. pneumophila differentiates into a cyst-like, environmentally resilient, highly infectious, post-SP form that is distinct from in vitro SP bacteria. Therefore, MIFs may represent the transmissible environmental forms associated with Legionnaires' disease.


2015 ◽  
Vol 55 (12) ◽  
pp. 1381 ◽  
Author(s):  
J. W. Ross ◽  
B. J. Hale ◽  
N. K. Gabler ◽  
R. P. Rhoads ◽  
A. F. Keating ◽  
...  

Heat stress negatively influences the global pork industry and undermines genetic, nutritional, management and pharmaceutical advances in management, feed and reproductive efficiency. Specifically, heat stress-induced economic losses result from poor sow performance, reduced and inconsistent growth, decreased carcass quality, mortality, morbidity, and processing issues caused by less rigid adipose tissue (also known as flimsy fat). When environmental conditions exceed the pig’s thermal neutral zone, nutrients are diverted from product synthesis (meat, fetus, milk) to body temperature maintenance thereby compromising efficiency. Unfortunately, genetic selection for both increased litter size and leaner phenotypes decreases pigs’ tolerance to heat, as enhanced fetal development and protein accretion results in increased basal heat production. Additionally, research has demonstrated that in utero heat stress negatively and permanently alters post-natal body temperature and body composition and both variables represent an underappreciated consequence of heat stress. Advances in management (i.e. cooling systems) have partially alleviated the negative impacts of heat stress, but productivity continues to decline during the warm summer months. The detrimental effects of heat stress on animal welfare and production will likely become more of an issue in regions most affected by continued predictions for climate change, with some models forecasting extreme summer conditions in key animal-producing areas of the globe. Therefore, heat stress is likely one of the primary factors limiting profitable animal protein production and will certainly continue to compromise food security (especially in emerging countries) and regionalise pork production in developed countries. Thus, there is an urgent need to have a better understanding of how heat stress reduces animal productivity. Defining the biology of how heat stress jeopardises animal performance is critical in developing approaches (genetic, managerial, nutritional and pharmaceutical) to ameliorate current production issues and improve animal wellbeing and performance.


2021 ◽  
Vol 940 (1) ◽  
pp. 012061
Author(s):  
S Tijjani ◽  
K Mizuno ◽  
H Herdiansyah

Abstract The uniqueness of mangrove protection in Papua is found in the Enggros Tribe, Youtefa Bay, Jayapura, Indonesia, a Women’s Forest. Women’s Forest is a mangrove forest managed under the Tonotwiyat customary law of Enggros Tribe, where men are prohibited from entering and foraging in this forest. However, the function of women’s forest ecosystem services began to decline by decreasing water quality, waste accumulation, and land conversion. The loss of ecosystem services must be analyzed to identify and quantify the loss of indigenous peoples. Based on the four frameworks of ecosystem service functions of TEEB (2011), the provisioning services, regulating services, habitat services, and cultural services, then carried out by desk study and in-depth interviews, it is shown that the most perceived loss by the community was the reduction in provisioning services by the declining the number of fish and bia noor. There is also a decline in cultural services satisfaction from women’s forests, where it is a place to talk and tell stories for Enggros Women. Further research in economic losses is needed. Local management by the Enggros Tribe itself must be increased, followed by the support from external stakeholders for the sustainability of women’s forests.


Author(s):  
Dale E. Bockman ◽  
L. Y. Frank Wu ◽  
Alexander R. Lawton ◽  
Max D. Cooper

B-lymphocytes normally synthesize small amounts of immunoglobulin, some of which is incorporated into the cell membrane where it serves as receptor of antigen. These cells, on contact with specific antigen, proliferate and differentiate to plasma cells which synthesize and secrete large quantities of immunoglobulin. The two stages of differentiation of this cell line (generation of B-lymphocytes and antigen-driven maturation to plasma cells) are clearly separable during ontogeny and in some immune deficiency diseases. The present report describes morphologic aberrations of B-lymphocytes in two diseases in which second stage differentiation is defective.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
B. L. Redmond ◽  
Christopher F. Bob

The American Elm (Ulmus americana L.) has been plagued by Dutch Elm Disease (DED), a lethal disease caused by the fungus Ceratocystis ulmi (Buisman) c. Moreau. Since its initial appearance in North America around 1930, DED has wrought inexorable devastation on the American elm population, triggering both environmental and economic losses. In response to the havoc caused by the disease, many attempts have been made to hybridize U. americana with a few ornamentally less desirable, though highly DED resistant, Asian species (mainly the Siberian elm, Ulmus pumila L., and the Chinese elm Ulmus parvifolia Jacq.). The goal is to develop, through breeding efforts, hybrid progeny that display the ornamentally desirable characteristics of U. americana with the disease resistance of the Asian species. Unfortunately, however, all attempts to hybridize U. americana have been prevented by incompatibility. Only through a firm understanding of both compatibility and incompatibility will it be possible to circumvent the incompatibility and hence achieve hybridization.


Author(s):  
A. R. Crooker ◽  
W. G. Kraft ◽  
T. L. Beard ◽  
M. C. Myers

Helicobacter pylori is a microaerophilic, gram-negative bacterium found in the upper gastrointestinal tract of humans. There is strong evidence that H. pylori is important in the etiology of gastritis; the bacterium may also be a major predisposing cause of peptic ulceration. On the gastric mucosa, the organism exists as a spiral form with one to seven sheathed flagella at one (usually) or both poles. Short spirals were seen in the first successful culture of the organism in 1983. In 1984, Marshall and Warren reported a coccoid form in older cultures. Since that time, other workers have observed rod and coccal forms in vitro; coccoid forms predominate in cultures 3-7 days old. We sought to examine the growth cycle of H. pylori in prolonged culture and the mode of coccoid body formation.


Sign in / Sign up

Export Citation Format

Share Document