Ewe culling and retention strategies to increase reproductive rates in Merino sheep

2018 ◽  
Vol 58 (8) ◽  
pp. 1545 ◽  
Author(s):  
S. Hatcher ◽  
S. Dominik ◽  
J. S. Richards ◽  
J. Young ◽  
J. Smith ◽  
...  

The present empirical study of data from three Merino resource flocks of varying genetic backgrounds run in different environments investigated the impact of various selection strategies aimed at culling poor performers (‘passengers’) or retaining good doers (‘performers’) longer, or both, on the flock reproductive performance. Four strategies were investigated and applied either individually or in combination, to quantify their impact on the litter size, rearing type and breeding efficiency (number of lambs weaned per ewe per year) of the whole flock. The main benefit from implementing any of the strategies was a decrease in the proportion of dry ewes in each flock (1–7%). There was little difference between the single strategies of culling twice-dry ewes or culling ewes that twice lambed and lost their lambs. When retaining a cohort of older ewes, it was more efficient to select these on the basis of their lifetime reproductive performance. There was only a marginal benefit gained by combining strategies and, in some cases, a single strategy was still better in terms of breeding efficiency. Commercial producers can improve the reproductive rate of these flocks by culling twice-dry ewes on the basis of their pregnancy scan data.

1987 ◽  
Vol 65 (5) ◽  
pp. 1091-1099 ◽  
Author(s):  
J. Ward Testa

The reproductive performance of tagged Weddell seals (Leptonychotes weddelli) was monitored at McMurdo Sound, Antarctica, from 1970 to 1984. An age-specific reproductive schedule revealed the major onset of pupping at age 6 years, and a mean age of first birth of 7.1 years. The average asymptotic pupping rate of 0.61 is reached by age 10. The cost of pupping in a given year is reflected in a 0.05 drop in the probability of pupping the following year. This cost is not evident in females over 7 years old, suggesting that postweaning condition affects newly mature females more than those that are fully mature. Annual adult reproductive rates ranged from 0.46 to 0.79, with a possible periodicity of 5 to 6 years. Simulations were conducted to determine the impact on reproductive estimates of sighting biases associated with seals having had at least one pup (Parous) or having pupped that season (With-Pup). Age at first reproduction as deduced from an age-specific pupping schedule is strongly affected by both forms of sighting bias, but bias in sighting Parous females was the more important. Estimates of adult reproduction were affected minimally. Comparisons of reproductive estimates with those of Weddell seals at Signy Island are discussed with regard to the effects of sighting biases.


2017 ◽  
Vol 57 (9) ◽  
pp. 1952 ◽  
Author(s):  
S. F. Walkom ◽  
D. J. Brown

Australian sheep producers have the potential to improve reproductive rates through optimising ewe body condition across the production cycle. Managing ewe body condition can become costly when supplementary feeding is required due to poor pasture growth or rainfall and by using appropriate genetics, producers can theoretically reduce the flock’s dependency on supplementary feed and improve reproductive rates. Reproductive records from the Information Nucleus Flock and Sheep Genetics Merino and maternal breed datasets were analysed to examine the influence of sire breeding values for liveweight (post-weaning, yearling and adult assessments), fat and eye muscle depths (post-weaning and yearling assessments) and number of lambs weaned on reproductive performance (fertility, litter size and number of lambs born) across a variety of production environments. To determine the impact of environmental conditions on the relationship between weight, ultrasound body composition, and reproduction traits the daughters’ adjusted reproductive performances were regressed on the sire’s breeding value across flocks, within flocks and within flock × year. Irrespective of age at assessment, sire breeding values for liveweight, fat and eye muscle depths had very little association with the reproductive performance of their daughters, on average. The regressions of reproduction on weight, and fat and eye muscle depth traits varied across flocks from unfavourable to favourable estimates. The very small overall impact of weight, and fat and eye muscle depth traits, on average suggests that using sire breeding values for number of lambs weaned, which had a large impact on reproduction, will provide the most viable method to genetically improve reproductive performance within the production system in question.


2007 ◽  
Vol 274 (1620) ◽  
pp. 1845-1851 ◽  
Author(s):  
Samantha A Price ◽  
John L Gittleman

Half of all artiodactyls (even-toed hoofed mammals) are threatened with extinction, around double the mammalian average. Here, using a complete species-level phylogeny, we construct a multivariate model to assess for the first time which intrinsic (biological) and extrinsic (anthropogenic and environmental) factors influence variation in extinction risk in artiodactyls. Globally artiodactyls at greatest risk live in economically less developed areas, have older weaning ages and smaller geographical ranges. Our findings suggest that identifying predictors of threat is complicated by interactions between both biological and anthropogenic factors, resulting in differential responses to threatening processes. Artiodactyl species that experience unregulated hunting live in significantly less economically developed areas than those that are not hunted; however, hunted species are more susceptible to extinction if they have slower reproductive rates (older weaning ages). In contrast, risk in non-hunted artiodactyls is unrelated to reproductive rate and more closely associated with the economic development of the region in which they live.


2014 ◽  
Vol 54 (6) ◽  
pp. 715 ◽  
Author(s):  
K. G. Geenty ◽  
F. D. Brien ◽  
G. N. Hinch ◽  
R. C. Dobos ◽  
G. Refshauge ◽  
...  

The present paper covers reproductive performance in an artificial-insemination (AI) program of the Sheep CRC Information Nucleus with 24 699 lambs born at eight locations in southern Australia across five lambings between 2007 and 2011. Results from AI with frozen semen compared well with industry standards for natural mating. Conception rates averaged 72%, and 1.45 lambs were born per ewe pregnant for Merino ewes and 1.67 for crossbreds. Lamb deaths averaged 21% for Merino ewes and 15% for crossbreds and 19%, 22% and 20% for lambs from ewes that were mated to terminal, Merino and maternal sire types, respectively. Net reproductive rates were 82% for Merino ewes and 102% for crossbreds. From 3198 necropsies across 4 years, dystocia and starvation-mismothering accounted for 72% of lamb deaths within 5 days of lambing. Major risk factors for lamb mortality were birth type (single, twin or higher order), birthweight and dam breed. Losses were higher for twin and triplet lambs than for singles and there was greater mortality at relatively lighter and heavier birthweights. We conclude that reproductive rate in this AI program compared favourably with natural mating. Lamb birthweight for optimum survival was in the 4–8-kg range. Crossbred ewes had greater reproductive efficiency than did Merinos.


1991 ◽  
Vol 31 (6) ◽  
pp. 737
Author(s):  
SJ Eady ◽  
PK O'Rourke ◽  
PT Connelly

Three experiments were conducted to provide information on the wool production and reproductive rates of different strains of Merino sheep, and on the role of heat tolerance in determining the productivity of sheep in north-western Queensland. The locally bred Peppin Merinos had a significantly (P<0.05) lower rectal temperature (RT) and respiratory rate (RR) under heat load than the South Australian (SA) strain Merinos. Place of birth of SA Merinos had no effect on their RT and RR. At 16 months of age the Peppin sheep produced significantly (P<0.05) less clean wool (1.55 v. 1.82 kg) and had significantly (P<0.05) lower liveweights (28.5 v. 31.6 kg) than the SA group reared in the same environment. Although differences between the groups were not always statistically significant, there was a trend for a consistent increase in wool production, fibre diameter and liveweight as the proportion of SA in the cross increased. The impact of these differences on proceeds from wool sales is discussed. At maturity the SA strain ewes were heavier (P<0.05) than their Peppin counterparts (48.4 v. 44.1 kg) and produced heavier (P<0.05) lambs at 6 weeks of age (7.0 v. 6.2 kg) and at weaning (13.9 v. 12.5 kg). Milk yield at 6 weeks post-lambing was significantly (P<0.05) greater for the SA sheep than the Peppin Merinos (303 v. 216 mL/day). Lamb survival from 6 weeks to 3 months was 64% for the SA Merinos and 45% for the Peppin Merinos, but this difference was not statistically significant. The SA strain Merinos produced more clean wool and heavier offspring than locally bred Peppin sheep and demonstrated a similar reproduction rate in the face of severe drought conditions.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2021 ◽  
Vol 29 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Margaretha Gansterer ◽  
Richard F. Hartl

AbstractLogistics providers have to utilize available capacities efficiently in order to cope with increasing competition and desired quality of service. One possibility to reduce idle capacity is to build coalitions with other players on the market. While the willingness to enter such coalitions does exist in the logistics industry, the success of collaborations strongly depends on mutual trust and behavior of participants. Hence, a proper mechanism design, where carriers do not have incentives to deviate from jointly established rules, is needed. We propose to use a combinatorial auction system, for which several properties are already well researched but little is known about the auction’s first phase, where carriers have to decide on the set of requests offered to the auction. Profitable selection strategies, aiming at maximization of total collaboration gains, do exist. However, the impact on individual outcomes, if one or more players deviate from jointly agreed selection rules is yet to be researched. We analyze whether participants in an auction-based transport collaboration face a Prisoners’ Dilemma. While it is possible to construct such a setting, our computational study reveals that carriers do not profit from declining the cooperative strategy. This is an important and insightful finding, since it further strengthens the practical applicability of auction-based trading mechanisms in collaborative transportation.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 18-19
Author(s):  
Felipe Hickmann ◽  
José Braccini Neto ◽  
Luke M Kramer ◽  
Kent A Gray ◽  
Yijian Huang ◽  
...  

Abstract Studies on differences in resilience to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) between breeds are scarce in the literature. Thus, the objective of this work was to assess PRRSV resilience in PRRSV wild-type infected sows from two breeds. Farrowing data included 2546 and 2522 litters from 894 Duroc and 813 Landrace sows, respectively, which were housed together and experienced the same PRRSV outbreak. Traits used for this study were number of piglets born alive (NBA), number born dead (NBD), total number born (TNB), and number weaned (NW). The impact of PRRSV infection was evaluated by comparing the reproductive performance of breeds between PRRS phases (pre-PRRS, PRRS, and post-PRRS). PRRS phases were defined based on the reproductive performance data. NBA, NBD, and NW were analyzed as a proportion of TNB using a Poisson mixed model. Pre-defined contrasts were used to evaluate the effect of breed on PRRSV resilience and on return to PRRSV-free performance, representing the differences between breeds for the difference between pre-PRRS and PRRS phases, and pre-PRRS and post-PRRS phases, respectively. There was a significant (P ≤ 0.003) interaction between PRRS phase and breed for all traits, as shown in Table 1. In general, reproductive performance reduced from pre-PRRS to PRRS, and then increased from PRRS to post-PRRS, as expected. The resilience contrast was significant for all traits (P ≤ 0.003). In all cases, the drop in percent reproductive performance from pre-PRRS to PRRS was lower for Duroc than for Landrace, indicating that Duroc sows have greater PRRSV resilience than Landrace sows. The return to PRRSV-free performance contrast had a trending effect for NBD (P = 0.055), and it was not significant for the other traits (P ≥ 0.515). These results indicate that Duroc sows have overall greater phenotypic PRRSV resilience for reproductive performance than Landrace sows.


Author(s):  
S.-H. Kim ◽  
H. Park ◽  
W. Kim ◽  
J.-H. Song ◽  
S.J. Roh ◽  
...  

The establishment of efficient and sustainable production of industrially important insects necessitates the detailed knowledge of the optimal mixture of macronutrients required for maximising their performance and fitness. The white spotted flower chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae: Cetoniinae), is one of the most important edible insects in East Asia with high nutritional and medicinal value. Here, we report how the ratio of protein to digestible carbohydrate (P:C) in the diet influenced lifespan and reproductive performance in the adults of P. brevitarsis. Throughout their lifespan, beetles were fed ad libitum one of five diets with differing P:C ratio (0:1, 3:7, 1:1, 7:3, 1:0). Both lifespan and the number of eggs produced over the lifetime were maximised at the P:C ratio of 3:7 and declined as the ratio deviated away from this optimal P:C composition. Beetles fed a diet containing only protein (P:C 1:0) not only had the shortest lifespan but also exhibited substantially reduced lifetime egg production compared to those fed the other diets. However, the effects of dietary P:C ratio on daily egg production rate and egg hatchability were marginal. The number of eggs produced at each age stage peaked at the age of week 2 and then gradually declined with increasing age, showing the sign of reproductive senescence. Age-specific egg production was higher in beetles confined to three intermediate P:C ratios (3:7, 1:1, 7:3) than those confined to two extreme P:C ratios (0:1, 1:0) throughout their lifespan. The speed of age-related decrease in reproductive performance was the slowest at P:C 3:7. Our data have implications for optimising the production of this edible insect with emerging economic importance.


Author(s):  
Zachary Merrill ◽  
April Chambers ◽  
Rakié Cham

Body segment parameters (BSPs) such as segment mass and center of mass are used as inputs in ergonomic design and biomechanical models to predict the risk of musculoskeletal injuries. These models have been shown to be sensitive to the BSP values used as inputs, demonstrating the necessity of using accurate and representative parameters. This study aims to provide accurate BSPs by quantifying the impact of age and body mass index on torso and thigh mass and center of mass in working adults using whole body dual energy x-ray absorptiometry (DXA) scan data. The results showed significant effects of gender, age, and body mass index (BMI) on torso and thigh mass and center of mass, as well as significant effects of age and BMI within genders, indicating that age, gender, and BMI need to be taken into account when predicting BSPs in order to calculate representative ergonomic and biomechanical model outputs.


Sign in / Sign up

Export Citation Format

Share Document