In Vitro Inhibition of Colletotrichum Gloeosporioides and Other Phytopathogenic Fungi by an Amazonian Isolate of Bacillus Subtilis and Its Cell-Free Culture Filtrate.

1994 ◽  
Vol 23 (2) ◽  
pp. 41 ◽  
Author(s):  
S Kelemu ◽  
JL Badel

2022 ◽  
Vol 8 (1) ◽  
pp. 80
Author(s):  
Yongmei Li ◽  
Mengyuan Xia ◽  
Pengbo He ◽  
Qiaoming Yang ◽  
Yixin Wu ◽  
...  

Citrus is among the most important plants in the fruit industry severely infected with pathogens. Citrus green mold caused by Penicillium digitatum is one of the most devastating diseases during post-harvest stages of citrus fruit. In this study, a potential endophyte Bacillus subtilis L1-21, isolated from healthy citrus plants, was assessed for its biocontrol activity against the pathogen P. digitatum. Based on an in vitro crosstalk assay, we suggested that B. subtilis L1-21 inhibits the pathogen with an inhibition zone of 3.51 ± 0.08 cm. Biocontrol efficacy was highest for the fermented culture filtrate of B. subtilis L1-21. Additionally, using GC-MS analysis, 13 compounds were detected in the extract of this endophyte. The culture filtrate in Landy medium could enlarge and deform pathogen spores and prevent them from developing into normal mycelium. Accordingly, the Landy culture filtrate of B. subtilis L1-21 was stable in the temperature range of 4–90 °C and pH of 3–11. Further, MALDI-TOF-MS for B. subtilis L1-21 detected surfactin, fengycin, bacillaene and bacilysin as potential antifungal compounds. GFP-tagged B. subtilis L1-21 easily colonized in citrus fruit peel and pulp, suggesting its role in eliminating the fungal pathogen. Altogether, it is highly expected that the production of antifungal compounds, and the colonization potential of B. subtilis L1-21 are required against the post-harvest P. digitatum pathogen on citrus fruit.



3 Biotech ◽  
2020 ◽  
Vol 10 (8) ◽  
Author(s):  
Ramírez-Vigil Emanuel ◽  
Peña-Uribe César Arturo ◽  
Macías-Rodríguez Lourdes Iveth ◽  
Reyes de la Cruz Homero ◽  
Chávez-Avilés Mauricio Nahuam


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1691-1695 ◽  
Author(s):  
Thongchai Taechowisan ◽  
Chunhua Lu ◽  
Yuemao Shen ◽  
Saisamorn Lumyong

Streptomyces aureofaciens CMUAc130 was isolated from the root tissue of Zingiber officinale Rosc. (Zingiberaceae). It was an antagonist of Colletotrichum musae and Fusarium oxysporum, the causative agents of anthracnose of banana and wilt of wheat, respectively. Evidence for the in vitro antibiosis of S. aureofaciens CMUAc130 was demonstrated by the zone of fungal-growth inhibition. Microscopic observations showed thickness and bulbous structures at the edges of the inhibited fungal hyphae. The culture filtrate and crude extract from this strain were all inhibitory to tested phytopathogenic fungi. The major active ingredients from the culture filtrate of S. aureofaciens CMUAc130 were purified by silica gel-column chromatography and identified to be (i) 5,7-dimethoxy-4-p-methoxylphenylcoumarin and (ii) 5,7-dimethoxy-4-phenylcoumarin by NMR and mass-spectral data, respectively. Bioassay studies showed that compounds (i) and (ii) had antifungal activities against tested fungi, and their MICs were found to be 120 and 150 μg ml−1, respectively. This is the first report of compounds (i) and (ii) from micro-organisms as active ingredients for the control of phytopathogenic fungi.



2003 ◽  
Vol 49 (4) ◽  
pp. 253-262 ◽  
Author(s):  
Yiu-Kwok Chan ◽  
Wayne A McCormick ◽  
Keith A Seifert

Bacteria were isolated from a cultivated soil and screened for antagonistic activity against Fusarium graminearum, a predominant agent of ear rot and head blight in cereal crops. Based on its in vitro effectiveness, isolate D1/2 was selected for characterization and identified as a strain of Bacillus subtilis by phenotypic tests and comparative analysis of its 16S ribosomal RNA gene (rDNA) sequence. It inhibited the mycelial growth of a collection of common fungal phytopathogens, including eight Fusarium species, three other ascomycetes, and one basidiomycete. The cell-free culture filtrate of D1/2 at different dilutions was active against macroconidium germination and hyphal growth of F. graminearum, depending on the initial macroconidium density. It induced the formation of swollen hyphal cells in liquid cultures of this fungus grown from macroconidia. A bioassay also demonstrated that D1/2 offered in planta protection against the damping-off disease in alfalfa seedlings caused by F. graminearum, while the type strain of B. subtilis was ineffective. Hence, B. subtilis D1/2 or its culture filtrate has potential application in controlling plant diseases caused by Fusarium.Key words: antifungal activity, Bacillus subtilis, biological control, biopesticide, Fusarium species.



2018 ◽  
Vol 93 (2) ◽  
pp. 195
Author(s):  
Jeniffer Kelly Cortes Amaro ◽  
Bruno Sérgio Vieira ◽  
Luciana Alves Sousa

Objetivou-se estudar o potencial antagônico de isolados de Bacillus subtilis a Colletotrichum gloeosporioides, agente causal da antracnose em frutos de pimenta. Foram estudados 21 isolados de Bacillus subtilis quanto a capacidade de inibir o desenvolvimento do fitopatógeno nas seguintes metodologias in vitro: cultivo pareado, metabólitos produzidos pelos isolados, influência da inoculação conjunta e controle da antracnose in vivo (frutos destacados de pimenta). Os isolados BSV-11, BSV-05, BSV-12, BSV-17, BSV-07, BSV-16, BSV-09, BSV-20, BSV-13 e BSV-18 foram promissores como potenciais antagonistas a C. gloeosporioides, com evidente formação de halo de inibição, para a metodologia do cultivo pareado. Estes isolados produziram metabólitos termoestáveis contra C. gloeosporioides evidenciando ser antibiose o mecanismo antagônico envolvido na supressão do patógeno. O contato direto dos isolados bacterianos com o patógeno inibiu totalmente o crescimento micelial de C. gloeosporioides, exceto os isolados BSV-20 e BSV-09. Os isolados BSV-20, BSV-18, BSV-17, BSV-07 e BSV-12 inibiram significativamente infecções de antracnose em frutos de pimenta em pós-colheita.



2002 ◽  
Vol 5 (3) ◽  
pp. 303-306 ◽  
Author(s):  
Shahidul Alam ◽  
M. Sabina Banu ◽  
M. Forman Ali . ◽  
Nargis Akhter . ◽  
M. Rafiqul Islam . ◽  
...  


2021 ◽  
Vol 12 ◽  
Author(s):  
N. Portal González ◽  
A. Soler ◽  
C. Ribadeneira ◽  
J. Solano ◽  
Roxana Portieles ◽  
...  

Banana is a major tropical fruit crop but banana production worldwide is seriously threatened due to Fusarium wilt. Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt of banana (also referred as Panama disease) is an asexual, soil inhabiting facultative parasite. Foc isolates can be classified into three races that are not defined genetically, but for their pathogenicity to different banana cultivars. Despite mycotoxins being some of the best studied virulence factors of phytopathogenic fungi and these have been useful for the prediction of Foc virulence on banana plants, toxins produced by Foc race 2 strains have not been previously identified. The aim of this contribution was to identify the phytotoxic metabolites closely related to banana wilt caused by a Foc race 2 strain. We used an in vitro bioassay on detached banana leaves to evaluate the specificity of the microbial culture filtrates before a partial purification and further identification of Foc race 2 phytotoxins. A 29-day-old host-specific culture filtrate was obtained but specificity of culture filtrate was unrecovered after partial purification. The non-specific phytotoxins were characterized as fusaric acid, beauvericin, and enniatin A. Whereas some, if not all, of these phytotoxins are important virulence factors, a proteinaceous fraction from the specific 29-day-old culture filtrate protected the leaves of the resistant banana cultivar from damage caused by such phytotoxic metabolites.



Author(s):  
Bianca de Melo Silveira dos Santos ◽  
Maura Santos dos Reis de Andrade Silva ◽  
Davy William Hidalgo Chávez ◽  
Everlon Cid Rigobelo

The use of microorganisms in agriculture as biofertilizers and biocontrol agents, in addition to their use in biotechnological practices, has been explored increasingly frequently over the years. Some bacteria, including Bacillus subtilis, have many capabilities related to promoting plant growth. The present study attempted to evaluate eight B. subtilis strains regarding their capacity for enzymatic degradation, resistance to trace elements, antagonism against phytopathogenic fungi and siderophore production. The tests were performed in plate dishes and test tubes with six repetitions for each bacterial isolate. The results showed that all isolates were able to perform enzymatic degradation to phosphatase, amylase and cellulase. Regarding resistance to trace elements, for Cd, 0.5 mmol L-1 was sufficient to prevent the development of strains 248, 263 and 320; for Cu, isolate 263 obtained greater resistance; for Zn, isolate 320 was inhibited at 2.0 mmol L-1, for Cr(III), isolates 290 and 291 showed greater resistance to the metal, whereas for Cr(VI), isolates showed the same resistance pattern; and for Ni, isolates showed the same resistance behavior. In vitro antagonism occurred for all isolates; however, the antagonism occurred at different intensities, except for isolate 291. The production of siderophores was identified for only six isolates: 287, 320, 309, 274, 263 and 248. These results establish a foundation for further investigations to clarify the conditions and/or characteristics required by isolates for a more effective performance, observing metabolic routes and genetic mechanisms



2001 ◽  
Vol 91 (2) ◽  
pp. 181-187 ◽  
Author(s):  
S. Yoshida ◽  
S. Hiradate ◽  
T. Tsukamoto ◽  
K. Hatakeda ◽  
A. Shirata

A potential antagonist, Bacillus amyloliquefaciens strain RC-2, against Colletotrichum dematium, mulberry anthracnose fungus, was obtained from healthy mulberry leaves by in vitro and in vivo screening techniques. Application of culture filtrate of RC-2 inhibited disease on mulberry leaves, indicating that suppression was due to antifungal compounds in the filtrate. Development of mulberry anthracnose on mulberry leaves was inhibited only when the culture filtrate was applied before fungal inoculation, and it was not inhibited by application after inoculation. These results suggest that the antifungal compounds in the filtrate exhibit a preventive effect on the disease. Peptone significantly increased production of the antifungal compounds. The culture filtrate of RC-2 also inhibited the growth of several other phytopathogenic fungi and bacteria, such as Rosellinia necatrix, Pyricularia oryzae, Agrobacterium tumefaciens, and Xanthomonas campestris pv. campestris, in vitro. From the culture filtrate of RC-2, seven kinds of antifungal compounds were isolated by high performance liquid chromatography analysis, and one of the compounds was determined as iturin A2, a cyclic peptide, by nuclear magnetic resonance and fast atom bombardment mass analysis.





Sign in / Sign up

Export Citation Format

Share Document