Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity

Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1691-1695 ◽  
Author(s):  
Thongchai Taechowisan ◽  
Chunhua Lu ◽  
Yuemao Shen ◽  
Saisamorn Lumyong

Streptomyces aureofaciens CMUAc130 was isolated from the root tissue of Zingiber officinale Rosc. (Zingiberaceae). It was an antagonist of Colletotrichum musae and Fusarium oxysporum, the causative agents of anthracnose of banana and wilt of wheat, respectively. Evidence for the in vitro antibiosis of S. aureofaciens CMUAc130 was demonstrated by the zone of fungal-growth inhibition. Microscopic observations showed thickness and bulbous structures at the edges of the inhibited fungal hyphae. The culture filtrate and crude extract from this strain were all inhibitory to tested phytopathogenic fungi. The major active ingredients from the culture filtrate of S. aureofaciens CMUAc130 were purified by silica gel-column chromatography and identified to be (i) 5,7-dimethoxy-4-p-methoxylphenylcoumarin and (ii) 5,7-dimethoxy-4-phenylcoumarin by NMR and mass-spectral data, respectively. Bioassay studies showed that compounds (i) and (ii) had antifungal activities against tested fungi, and their MICs were found to be 120 and 150 μg ml−1, respectively. This is the first report of compounds (i) and (ii) from micro-organisms as active ingredients for the control of phytopathogenic fungi.

2001 ◽  
Vol 45 (7) ◽  
pp. 2008-2017 ◽  
Author(s):  
Chandravanu Dash ◽  
Absar Ahmad ◽  
Devyani Nath ◽  
Mala Rao

ABSTRACT A novel bifunctional inhibitor (ATBI) from an extremophilicBacillus sp. exhibiting an activity against phytopathogenic fungi, including Alternaria, Aspergillus, Curvularia, Colletotricum, Fusarium, and Phomopsis species, and the saprophytic fungus Trichoderma sp. has been investigated. The 50% inhibitory concentrations of ATBI ranged from 0.30 to 5.9 μg/ml, whereas the MIC varied from 0.60 to 3.5 μg/ml for the fungal growth inhibition. The negative charge and the absence of periodic secondary structure in ATBI suggested an alternative mechanism for fungal growth inhibition. Rescue of fungal growth inhibition by the hydrolytic products of xylanase and aspartic protease indicated the involvement of these enzymes in cellular growth. The chemical modification of Asp or Glu or Lys residues of ATBI by 2,4,6-trinitrobenzenesulfonic acid and Woodward's reagent K, respectively, abolished its antifungal activity. In addition, ATBI also inhibited xylanase and aspartic protease competitively, withKi values 1.75 and 3.25 μM, respectively. Our discovery led us to envisage a paradigm shift in the concept of fungal growth inhibition for the role of antixylanolytic activity. Here we report for the first time a novel class of antifungal peptide, exhibiting bifunctional inhibitory activity.


Author(s):  
Kevison Romulo da Silva França ◽  
Flavia Mota de Figueredo Alves ◽  
Tiago Silva Lima ◽  
Alda Leaby dos Santos Xavier ◽  
Plínio Tércio Medeiros de Azevedo ◽  
...  

This study evaluates the in vitro effects of Lippia gracilis essential oil on the mycelial growth of phytopathogenic fungi. Experiments were carried out using a completely randomized design to assess the effects of eight treatments. Five replicates were evaluated for each experimental group. The essential oil was incorporated into the potato dextrose culture medium and poured into Petri dishes. Treatments were comprised of different concentrations of the oil (0.0125, 0.025, 0.05, 0.1, and 0.2%), a negative control (0.0%), and two positive controls (commercial fungicides). The plates were inoculated with fungi including Colletotrichum gloeosporioides, C. musae, C. fructicola, C. asianum, Alternaria alternata, A. brassicicola, Fusarium solani, F. oxysporum f. sp. cubense, and Lasiodiplodia theobromae and were incubated for seven days at 27 ± 2°C. The following variables were measured to verify the differences observed among treatments: percentage of mycelial growth inhibition and index of mycelial growth speed. All concentrations of L. gracilis oil inhibited the mycelial growth of the fungal species evaluated. The complete inhibition was observed between concentrations of 0.0125 and 0.1%. Treatment with oil inhibited fungal growth with similar, or even greater, efficiency than commercial fungicides.. We recommend the development of in vivo tests to verify whether L. gracilis essential oil can protect against fungal disease in live plants.


Author(s):  
Clenilda Tolentino Bento da Silva ◽  
Alessandra Keiko Nakasone ◽  
Walkymário de Paulo Lemos ◽  
Osmar Alves Lameira ◽  
Luana Cardoso de Oliveira

Aims: This work aimed to evaluate the antimicrobial effects of 14 alcoholic extracts of medicinal plants on the mycelial growth of Colletotrichum gloeosporioides, Fusarium oxysporum f. sp. passiflorae, Fusarium solani and Rhizoctonia solani. Those are fungi that cause diseases in Passiflora edulis. Study Design: With the obtained data the mycelial growth rate index (MGRI) was calculated, afterwards the analysis of variance was performed and the means were compared by the Scott-Knott test at 5% probability. Place and Duration of Study: Plant Pathology Laboratory, Embrapa Eastern Amazon, Belém, Pará, Brazil, between May 2014 and April 2015. Methodology: The extracts were prepared with 1.0 g of powdered plant material and 10 mL of commercial ethyl alcohol 92.8º (0.1 g mL-1) under constant agitation in an orbital shaker at 200 rpm for 20 minutes. They were then kept in the refrigerator for 24 hours at rest. The extracts were centrifuged and filtered on Millipore membranes with 0.22 µm porosity. The tests with the phytopathogenic fungi were carried out in vitro with the alcoholic extracts at 1% concentration. The experimental design was completely randomized with 15 treatments and 5 replicates. Results: All the extracts reduced the growth of the fungi C. gloeosporioides. The extracts the Eucalyptus angulosa, Lippia alba, Zingiber officinale, Cymbopagon citratus, Azadirachta indica, Plectranthus barbathus, Hibiscus sabdariffa, Aloe vera, Pedilanthus tithymaloides, Mansoa alliacea and Chenopodium ambrosioides reduced the mycelial growth of F. oxysporum f. sp. passiflorae. Only the extract of E. angulosa presented reduction in the growth of F. solani. Meanwhile the extracts of E. angulosa, Z. officinale, L. alba, M. alliacea and P. barbathus reduced the mycelial growth of R. solani. Conclusion: All extracts presented antimicrobial potential, being that the extract of E. angulosa reduced the mycelial growth of all the evaluated fungi.


2020 ◽  
Author(s):  
nasrollah najibi ilkhechi ◽  
Mahdi Mozammel ◽  
Ahmad Yari Khoroushahi

Abstract This study aimed to synthesis ZnO, TiO2 and ZnO–TiO2 (ratio weight of 1/1 for Zn/Ti) nanoparticles using zinc acetate and titanium isopropoxide through the sol-gel method. Physicochemical and morphological characterization and antifungal properties evaluation like minimum inhibition concentration (MIC) and minimum fungicide concentration (MFC) of nanopowders were investigated against Aspergillus flavus at in vitro. All synthesized nanoparticles (50 µg/ml) showed fungal growth inhibition while ZnO-TiO2 showed higher antifungal activity against A. flavus than pure TiO2 and ZnO. TiO2 and ZnO-TiO2 (300 µg/ml) inhibited 100% of spur production. Pure ZnO and TiO2 showed pyramidal and spherical shapes, respectively whereas ZnO-TiO2 nanopowders illustrated both spherical and pyramidal shapes with grown particles on the surface. Based on our findings, low concentration (150 µg/ml) of ZnO-TiO2 showed higher ROS production and stress oxidative induction thus fungicide effect as compared to alone TiO2 and ZnO. In conclusion, ZnO-TiO2 nanostructure can be utilized as an effective antifungal compound but more studies need to be performed to understand the antifungal mechanism of the nanoparticles rather than ROS inducing apoptosis.


2020 ◽  
Vol 6 (1) ◽  
pp. 26-32
Author(s):  
Mulya Sari ◽  
Nampiah Sukarno ◽  
Irmanida Batubara ◽  
Rohani Cinta Badia Br Ginting

Endophytic fungi isolated from red ginger (Zingiber officinale) can inhibit growth of Fusarium oxysporum, but the ability of the fungi to control Candida albicans  as human pathogen has not been reported. The aims of this research were to study the mechanism of ten endophytic fungi isolates derived from red ginger to control C. albicans in vitro using dual culture methode and fungal extract, and to determine fungal bioactive chemical groups produced by the fungi. Three out of ten isolates tested, Talaromyces assiutensis JMa 7, T. assiutensis JMbt 3, and Curvularia affinis JMbt 9 inhibited growth of C. albicans with inhibition zones were 4.0 mm, 4.9 mm, and 11.3 mm, respectively. The cultures of the three potential endophytic fungi were extracted by maceration method using 3 solvents i.e ethyl acetate, n-hexane and ethanol. The three isolates were grown in PDB separately for 21 days incubation. At harvest, the culture filtrate was extracted by ethyl acetate and n-hexane, while fungal mycelia were extracted by all the three solvents. Ethyl acetate extracts obtained from culture filtrate of all the three fungal isolates consistently inhibited C. albicans with inhibition zones were 2.0-3.8 mm. For n-hexane extract, however, only Talaromyces assiutensis JMbt 3 that had positive effect with inhibition zone was 2.0 mm. All extracts from mycelia did not have any effects on C. albicans. The ethyl acetate extract of T. assiutensis JMbt 3 was analysed to determine its chemical groups using visible color on thin layer chromatography (TLC). The results showed that the bioactive compounds was terpenoids, and antioxidant.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 599-602 ◽  
Author(s):  
W. D. Kelley ◽  
D. B. South

Effects of various herbicides on growth of ectotropic mycorrhizal fungi were determined over a 3-week period on modified Melin-Norcrans agar amended with the herbicides at rates of 0, 1, 3, 5, 10, 40, 80, 100, and 500 μg active ingredients/ml. Considerable variation in effect was observed among the herbicides for certain fungi and among the fungi for certain herbicides. All of the test fungi grew in the presence of each of the test herbicides at a rate of 80 μg/ml, and some growth was observed at the 500 μdg/ml rate in a majority of the herbicide-fungus combinations. Significant decreases (P = 0.05) in growth were observed for specific herbicide-fungus combinations at herbicide rates of 1 and 3 μg/ml; however, 50% or greater decreases in fungal colony areas were observed in only 12 of 112 of the combinations at such low rates. The herbicides, in decreasing order of activity against the fungi, were: diphenylethers > dinitroanilines > s-triazines > substituted amides > perfluidone [1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide]. With few exceptions, the herbicide concentrations necessary to affect fungal growth significantly were considerably higher than would be expected to occur in soil treated with the test herbicides at recommended application rates.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 425 ◽  
Author(s):  
Hilal Ahmad ◽  
Krishnan Venugopal ◽  
Kalyanaraman Rajagopal ◽  
Savitha De Britto ◽  
Boregowda Nandini ◽  
...  

Eucalyptus globules belonging to the Myrtaceae family was explored for the synthesis of zinc oxide nanoparticles and for biological applications. The aqueous extract of the synthesized zinc nanoparticles (ZnNPs) was characterized using UV-visible spectrophotometer, FTIR, SEM and TEM. The aqueous broth was observed to be an efficient reducing agent, leading to the rapid formation of ZnNPs of varied shapes with sizes ranging between 52–70 nm. In addition, antifungal activity of the biosynthesized ZnNPs was evaluated against major phytopathogens of apple orchards. At 100 ppm of ZnNPs, the fungal growth inhibition rate was found to be 76.7% for Alternaria mali, followed by 65.4 and 55.2% inhibition rate for Botryosphaeria dothidea and Diplodia seriata, respectively. The microscopic observations of the treated fungal plates revealed that ZnNPs damages the topography of the fungal hyphal layers leading to a reduced contraction of hyphae. This considerable fungicidal property of ZnNPs against phytopathogenic fungi can have a tremendous impact on exploitation of ZnNPs for fungal pest management and ensure protection in fruit crops.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 933
Author(s):  
Holger Klink ◽  
Joseph-Alexander Verreet ◽  
Mario Hasler ◽  
Tim Birr

Septoria tritici blotch (STB), caused by Zymoseptoria tritici, is one of the most important foliar wheat diseases worldwide. Current control strategies of STB rely mainly on fungicides, whereby triazoles (demethylation inhibitors; DMIs) have been the backbone in the control of Z. tritici in the last decades. However, in recent years a gradual loss of sensitivity of Z. tritici to several active ingredients of the triazole group has been reported in several European wheat-growing areas. Nevertheless, a new triazole fungicide, namely, mefentrifluconazole, has recently become available in disease management of STB, which belongs to a completely new triazole subclass, the so-called isopropanol triazoles. In this study, the trend in sensitivity development of Z. tritici towards older triazoles (tebuconazole, prothioconazole, and propiconazole) and the new isopropanol triazole mefentrifluconazole was determined in microtiter assays using Z. tritici field populations isolated in 1999, 2009, 2014, and 2020 in a high-disease-pressure and high-fungicide-input area in northern Germany in order to investigate whether the loss of sensitivity of Z. tritici to older triazoles also applies to mefentrifluconazole. For the three triazole fungicides tebuconazole, prothioconazole and propiconazole, a significant shift towards decreasing sensitivity of Z. tritici field populations was observed from 1999 to 2020, whereas the efficacy of mefentrifluconazole in reducing the in vitro fungal growth by 50% (EC50) remained unchanged over the investigated period, demonstrating a stable sensitivity of Z. tritici towards mefentrifluconazole. Although older triazoles are suffering from a loss of sensitivity of Z. tritici field populations due to the selection and spread of less triazole sensitive strains within the Z. tritici population, the efficacy of the new triazole mefentrifluconazole with its unique isopropanol unit was not affected by these changes within the Z. tritici population. Thus, the introduction of such new molecular units could also represent an important contribution for older groups of active ingredients, which previously suffered from a loss of sensitivity.


2017 ◽  
Vol 9 (4) ◽  
pp. 1916-1920
Author(s):  
Vipin Kumar ◽  
V.P. Chaudhary ◽  
Dharmendra Kumar ◽  
Ajay Kumar ◽  
Sushma Sagar ◽  
...  

Among the fungal diseases, sheath blight, caused by multinucleate Rhizoctoniasolani Kuhn (teleomorph: Thanatephorus cucumeris Donk), a ubiquitous pathogen, is an important fungal disease of rice ranking only after blast and often rivalling it. The potential losses due to sheath blight alone in India has been up to 51.3%. In this study an attempt was made to investigate the antifungal efficacy of botanicals viz., neem (Azadirachtaindica), tulsi (Ocimum sanctum), garlic (Allium sativum), onion (Allium cepa), ginger (Zingiberofficinale) and various fungicides namely mancozeb, propiconazole, hexaconazole, carbendazim, and copper oxychlorideagainst Rhizoctoniasolani in vitro by poison food technique. R. solani was allowed to grow at 5%, 10% concentrations of botanicals and at 200, 500, 1000ppm of fungicides amended potato dextrose agar (PDA) medium. The effect of botanicals and fungicides on mycelial growth inhibition was recorded after 36, 48 and 72 post hrs inoculation (phi). It was observed that bulb extract of Allium sativum and rhizome extract of Zingier officinal suppressed the mycelial growth (80.19 and 76.32, respectively) @ 10% followed by leaf extract of Azadirachtaindica (72.78 %) after 72 phi. Among the fungicides, the complete fungal growth inhibition was observed in propiconazole and carbendazim fungicides amended medium.


2016 ◽  
Vol 5 (3) ◽  
pp. 799-803
Author(s):  
Sergiu Fendrihan ◽  
Sorina Dinu ◽  
Oana Alina Sicuia ◽  
Florica Constantinescu

The environmental factors may influence the growth of microorganisms, by favoring their growth or slowing their multiplication rate and the synthesis of different metabolites. Parameters such as temperature, aeration, nutrients, pH or tolerance to NaCl can become limiting factors for microorganisms survival. Bacillus subtilis and related species can grow in variable pH conditions, maintaining the cytoplasmically pH in a relatively close range, stable to the synthesis of proteins and nucleic acids.The aim of this work was to assess the influence of some abiotic factors on the biocontrol activity of microbial bioproducts, based on beneficial strains from Bacillus sp.. The bioproducts were tested in vitro against soil borne fungi at different temperatures and pH conditions. The results showed that the antagonistic activity of the biopreparates, tested at 27°C and 25°C, against phytopathogenic fungi released antifungal metabolites which inhibited the fungal growth. Also, when different pH values were analyzed, the results reflected that at pH 5.5 and pH 8.5 the bioproducts maintained the same antagonistic effect as in the control variant (pH 7.0).


Sign in / Sign up

Export Citation Format

Share Document