Effects of aluminium on nodulation and early growth of four tropical pasture legumes

1984 ◽  
Vol 35 (5) ◽  
pp. 663 ◽  
Author(s):  
HE Murphy ◽  
DG Edwards ◽  
CJ Asher

Effects of aluminium concentrations of 0, 12.5, 25, 50, 100 or 125 �M on the nodulation and growth of Centrosema pubescens cv. Belalto, Macroptilium lathyroides cv. Murray, Stylosanthes guianensis cv. Schofield and Stylosanthes guianensis cv. Oxley were studied in solution cultures maintained at pH 4.5. The strains of Rhizobium used were CB1923, CB756, CB756 and CB1650 respectively. Solutions containing >25 �M aluminium (Al) delayed the appearance of nodules and reduced the percentage of plants which nodulated and the number and dry weight of nodules produced by all four legumes. At 125 �M Al, the proportion of plants which nodulated ranked in the order M. lathyroides (42%) > C. pubescens (29%) > Schofield stylo (16%) > Oxley stylo (0%). However, there were no significant effects of Al on dry matter production in M. lathyroides or C. pubescens. In Schofield stylo 250 �M A1 caused a small but significant yield reduction. In Oxley stylo, the yield reduction was significant at 25 �M , but became large only at 125 �M. It is concluded that in M. lathyroides, C. pubescens, and possibly Schofield stylo, nodulation is more sensitive to aluminium toxicity than is host plant growth. In Oxley stylo, threshold concentrations were similar for significant effects of aluminium toxicity on nodulation and growth.

Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


1969 ◽  
Vol 20 (3) ◽  
pp. 417 ◽  
Author(s):  
JH Silsbury

Lolium rigidum Gaud. and a summer-dormant and a non-dormant form of Lolium perenne L. were grown as seedling plants for 32 days in controlled environment cabinets at constant temperatures of either 10, 20, or 30°C and in all cases with a 16-hr photoperiod at a light intensity of 3600 lm ft-2. Sampling at 4-day intervals permitted the detailed examination of dry matter growth curves. Differences in total dry matter production were related to initial differences in seedling dry weight, and the general responses to temperature were similar for each ryegrass. Total dry matter production was greatest at 20°C and lowest at 10°. A temperature of 30° did not induce dormancy in the summer-dormant ryegrass but did depress growth. Relative growth rate fell with time at each temperature.


1987 ◽  
Vol 67 (1) ◽  
pp. 21-34 ◽  
Author(s):  
L. M. DWYER ◽  
D. W. STEWART

Barley (Hordeum vulgare ’Bruce’) was grown in a greenhouse under three photoperiods (8, 12 and 16 h) and nine watering treatments, resulting in different timing, duration and intensity of water stress. Phenological development, according to the Feekes scale, was monitored three times a week and leaf area was measured weekly from tillering to ripening. Final aboveground and root dry matter production and grain yield were obtained at harvest. Phenological observations were fit to a nonlinear photothermal model that expressed phenological development as a function of heat units modified by photoperiod. In the absence of water stress, maximum leaf area was directly proportional to photoperiod and the time of maximum leaf area was delayed at longer photoperiods. Water stress hastened leaf area senescence and, in general, the more severe the stress, the greater the reduction in leaf area. Most stress treatments also resulted in lower shoot/root ratios than found in well-watered controls, as well as significant yield reductions. Reduction in biomass and yield components appeared independent of photoperiod. In contrast, not only was phenological development rate proportional to photoperiod, but the effect of water stress on development rate was modified by photoperiod. Development was significantly delayed by several water stress treatments; no treatment significantly hastened development. A stress period from tillering to the beginning of stem extension caused the largest, and most consistent, delay and the duration of the delay was inversely proportional to the photoperiod.Key words: Barley, degree days, phenology, leaf area, biomass


1970 ◽  
Vol 21 (2) ◽  
pp. 195 ◽  
Author(s):  
PC Whiteman ◽  
A Lulhan

Plantings of D. uncinatum and P. atropuvpureus were made in October and December 1965 and February and April 1966, and subsequently the plots were either rotationally grazed by sheep, cut with a mower at 3 inches, or left undefoliated. Monthly samples were taken to determine individual plant dry weight, nodule weight per plant, nodule number, and mean weight per nodule. Three samples for plot dry matter yield were also taken. Individual plant dry weight was higher in the October and December sowings, although by the end of the second growing season dry matter yield per plot was higher in the December and February sowings. Dry matter yield of legume was depressed by April planting. D. uncinatum began regrowth in spring 2 months earlier than P, atropurpureus, when minimum temperatures exceeded 48-50�F compared with 57' for P. atropurpureus. Both species had marked seasonal peaks in nodule and plant dry weight. The rapid decline in nodule weight could not be directly related to the onset of flowering or frosts. Grazing caused a greater reduction than cutting in terms of plant and nodule weight and legume yield. In P. atropurpureus nodule weight per plant was reduced through a decline in mean weight per nodule, while in D. uncinatum grazing and cutting reduced nodule number per plant.


1967 ◽  
Vol 7 (29) ◽  
pp. 501 ◽  
Author(s):  
DF Cameron

The flowering times of 58 collections of Townsville lucerne from typical sites in northern Australia have been recorded in three spaced plant experiments near Townsville. Thirty-six collections were grown in 1963-64, 15 in 1964-65, and 17 in 1965-66. All the late flowering collections came from sites receiving at least 45 inches annual rainfall. The five collections from south of Rockhampton were all of the early or midseason type and all collections from the far northern areas were late flowering. Partial regression analysis was used to relate the flowering time of a collection to the rainfall (for the five months interval from January to May) and latitude of the collection site. In the first two experiments rainfall, latitude and (latitude)2 all contributed significantly to the regressions, but in the third experiment only rainfall was significant. Correlation coefficients for 1963-64, 1964-65, and 1965-66 were +0.83, +0.97, and +0.93 respectively. A selection was derived from a collection by bulking seed from single spaced plants selected for uniform flowering time and growth habit. The dry matter yields of some collections and selections were compared in two sward experiments near Townsville in 1964-65 and 1965-66. In 1964-65 there were significant yield differences between collections (experiment A, P<0.01) and between selections (experiment B, P<0.001). There were differences in the rates of vegetative growth and differences in the length of growing season, with late flowering types being able to make better growth late in the season when early types were flowering and seeding. Types with erect growth habit had the highest yields and seemed to compete better with sown grasses than the prostrate types. There were no significant yield differences in 1965-66, a very dry year, and the late flowering types failed to set seed.


1979 ◽  
Vol 6 (2) ◽  
pp. 187 ◽  
Author(s):  
JHM Thornley

A model of the wheat plant is described which consists of two components, the grain and storage material. Photosynthesis supplies further substrate to the store, from which material is used for grain growth at a rate that depends on the substrate level. The model allows predictions of grain dry weight at maturity and its dependence on total post-anthesis dry matter production, and leads to an interpretation of the source-sink interactions in this situation.


1996 ◽  
Vol 10 (2) ◽  
pp. 317-321 ◽  
Author(s):  
Patrick W. Geier ◽  
Larry D. Maddux ◽  
Loren J. Moshier ◽  
Phillip W. Stahlman

An in-row competition study was conducted in 1991 and 1992 near Silver Lake, KS to determine the relationship of noncultivated common sunflower density to soybean yield, PAR at the soybean canopy, and common sunflower dry matter production. Because of environmental differences, year main effect interactions occurred, so results are presented by year. For example, 0.3 common sunflower plant/m2produced 4030 kg/ha of aboveground dry matter in 1991 and 1300 kg/ha in 1992. Soybean yield reduction ranged from 19 and 17% with 0.3 common sunflower plant/m2to 97 and 95% with 4.6 plant/m2, in 1991 and 1992, respectively. Assuming a treatment cost of $35/ha and a soybean market price of $0.21/kg, economic threshold levels were 0.1 common sunflower plant/m2in 1991, and 0.07 in 1992. Common sunflower at 0.3 plant/m2reduced PAR at the soybean canopy by 390 and 300 μE/m2/s, or 24 and 18% in 1991 and 1992, respectively. We conclude that the ability of common sunflower to intercept PAR above the soybean canopy is an important component in its interference with soybean.


1970 ◽  
Vol 34 (1) ◽  
pp. 67-73
Author(s):  
M SH Islam ◽  
MSU Bhuiya ◽  
AR Gomosta ◽  
AR Sarkar ◽  
MM Hussain

Pot experiments were conducted during T. aman 2001 and 2002 (wet season) at Bangladesh Rice Research Institute (BRRI) in net house. Hybrid variety Sonarbangla-1 and inbred modern variety BRRI dhan-31 were used in both the seasons and BRRI hybrid dhan-l was used in 2002. The main objective of the experiments was to compare the growth and yield behaviour of hybrid and inbred rice varieties under controlled condition. In 2001, BRRI dhan-3l had about 10-15% higher plant height, very similar tillers/plant, 15-25% higher leaf area at all days after transplanting (DAT) compared to Sonarbangla-1. Sonarbangla- 1 had about 40% higher dry matter production at 25 DAT but had very similar dry matter production at 50 and 75 DAT, 4-11% higher rooting depth at all DATs, about 22% higher root dry weight at 25 DAT, but 5-10% lower root dry weight at 50 and 75 DAT compared to BRRI dhan-31. The photosynthetic rate was higher (20 μ mol m-2/sec-1) in BRRI dhan-3l at 35 DAT (maximum tillering stage) but at 65 DAT, Sonarbangla-l had higher photosynthetic rate of 19.5 μ mol m-2 sec-1. BRRI dhan-3l had higher panicles/plant than Sonarbangla-1, but Sonarbangla-1 had higher number of grains/panicle, 1000-grain weight and grain yield than BRRI dhan-31. In 2002, BRRI dhan-31 had the highest plant height at 25 DAT, but at 75 DAT, BRRI hybrid dhan-l had the highest plant height. Sonarbangla-1 had the largest leaf area at 25 and 50 DAT followed by BRRI dhan-31, but at 75 DAT, BRRI dhan-31 had the largest leaf area. The highest shoot dry matter was observed in BRRI dhan-31 followed by Sonarbangla-1 at all DATs. Sonarbangla-1 had the highest rooting depth and root dry weight at all DATs. BRRI dhan-31 gave the highest number of panicles/plant followed by Sonarbangla-I, BRRI hybrid dhan-l had the highest grains/panicle followed by BRRI dhan-31 and Sonarbangla-I had the highest 1000-grain weight followed by BRRI dhan-31. The highest amount of grains/plant (34.6 g) was obtained from BRRI dhan-31. Key Words: Shoot dry matter; root dry weight; leaf area; photosynthesis; grain yield. DOI: 10.3329/bjar.v34i1.5755Bangladesh J. Agril. Res. 34(1) : 67-73, March 2009


1973 ◽  
Vol 24 (3) ◽  
pp. 341 ◽  
Author(s):  
CS Andrew ◽  
PJVanden Berg

The effects of aluminium (0, 0.5, 1.0, and 2.0 p.p.m.) on dry matter production and subsequent short-term uptake and translocation of phosphorus in whole plants, and on the uptake of phosphorus by excised roots, of six tropical pasture legumes were ascertained. Macroptilium lathyroides, Desrnodiurn uncinaturn, Lotononis bainesii, and Stylosanthes hurnilis were tolerant species in terms of effects on dry matter production. Glycine wightii was a sensitive species and Medicago sativa a very sensitive one. In the whole plant study, plants were grown in Solution culture with a phosphorus concentration of 2 p.p.m., under the above aluminium treatments. Aluminium increased the subsequent uptake of phosphorus (tops+roots) in all species (phosphorus substrate concentration 1 x 10-5M labelled with 32P, 1 and 3 hr uptake periods). Phosphorus uptake in the tops of the four tolerant species was increased by aluminium treatment, and in the two sensitive species it uas reduced. In both the absence and presence of applied aluminium, L. bainesii was the most efficient species per unit weight of root tissue in sorbing total phosphorus, and in addition had the highest efficiency of translocation of phosphorus from roots to tops. S. humilis was also an efficient species. In the excised root study, addition of aluminium to the solution enhanced the sorption of phosphorus by all species. The enhancement was greater in a relatively strong phosphorus solution (2 x 10-4 M) than in a dilute solution (1 x 10-4). The sorption of phosphorus by excised roots of S. humilis from dilute and relatively strong phosphorus substrates was greater than that of other species, both in the absence and presence of added aluminium. L. bainesii was omitted from the excised root experiments.


Sign in / Sign up

Export Citation Format

Share Document