Factors which affects the growth of grain legumes on a solonized brown soil. I. Genotypic responses to soil physical factors

1991 ◽  
Vol 42 (1) ◽  
pp. 95
Author(s):  
BJ Atwell

Lupins (Lupinus angustifolius cvv. Yandee and 75A-258 and L. pilosus cv. P. 20957) and pea (Pisum sativum cv. Dundale) were grown in the field for 43 days on a solonized brown soil. Shoots of L. pilosus and peas grew most rapidly, while L. angustifolius cv. 75A-258 developed a relatively large root system. L. angustifolius cv. Yandee, a commercial lupin cultivar, was poorly adapted; shoot growth was restricted and roots ceased growing 36 days after sowing. The soil factors responsible for these widely differing responses were investigated. Once primary roots of L. angustifolius were 20-30 cm deep, root extension was slow or arrested. Indeed, primary root apices of Yandee were often necrotic in the soil below 20 cm. In contrast, roots proliferated rapidly in the surface 20 cm of the soil, particularly in 7SA-258, suggesting that factors in the deeper soil layers restricted root growth most severely. The vigorous growth of lateral roots of 75A-258 was reflected in a 2.6 fold greater total root length than for Yandee 43 days after sowing. Soil physical properties were not considered a likely explanation for these observations; soil water status and porosity were always favourable for root growth and root sections indicated that no cortical degradation, typical of O2 deficient roots, had occurred. Penetrometer resistance and root tip osmotic pressures suggested that poor root growth could not be ascribed simply to soil mechanical properties. The results suggest, by inference, that soil chemical factors could underlie the phenotypic responses observed.

1991 ◽  
Vol 42 (1) ◽  
pp. 95
Author(s):  
BJ Atwell

Lupins (Lupinus angustifolius cvv. Yandee and 75A-258 and L. pilosus cv. P. 20957) and pea (Pisum sativum cv. Dundale) were grown in the field for 43 days on a solonized brown soil. Shoots of L. pilosus and peas grew most rapidly, while L. angustifolius cv. 75A-258 developed a relatively large root system. L. angustifolius cv. Yandee, a commercial lupin cultivar, was poorly adapted; shoot growth was restricted and roots ceased growing 36 days after sowing. The soil factors responsible for these widely differing responses were investigated. Once primary roots of L. angustifolius were 20-30 cm deep, root extension was slow or arrested. Indeed, primary root apices of Yandee were often necrotic in the soil below 20 cm. In contrast, roots proliferated rapidly in the surface 20 cm of the soil, particularly in 7SA-258, suggesting that factors in the deeper soil layers restricted root growth most severely. The vigorous growth of lateral roots of 75A-258 was reflected in a 2.6 fold greater total root length than for Yandee 43 days after sowing. Soil physical properties were not considered a likely explanation for these observations; soil water status and porosity were always favourable for root growth and root sections indicated that no cortical degradation, typical of O2 deficient roots, had occurred. Penetrometer resistance and root tip osmotic pressures suggested that poor root growth could not be ascribed simply to soil mechanical properties. The results suggest, by inference, that soil chemical factors could underlie the phenotypic responses observed.


2005 ◽  
Vol 33 (1) ◽  
pp. 283-286 ◽  
Author(s):  
S. Filleur ◽  
P. Walch-Liu ◽  
Y. Gan ◽  
B.G. Forde

The architecture of a root system plays a major role in determining how efficiently a plant can capture water and nutrients from the soil. Growth occurs at the root tips and the process of exploring the soil volume depends on the behaviour of large numbers of individual root tips at different orders of branching. Each root tip is equipped with a battery of sensory mechanisms that enable it to respond to a range of environmental signals, including nutrients, water potential, light, gravity and touch. We have previously identified a MADS (MCM1, agamous, deficiens and SRF) box gene (ANR1) in Arabidopsis thaliana that is involved in modulating the rate of lateral root growth in response to changes in the external NO3− supply. Transgenic plants have been generated in which a constitutively expressed ANR1 protein can be post-translationally activated by treatment with dexamethasone (DEX). When roots of these lines are treated with DEX, lateral root growth is markedly stimulated but there is no effect on primary root growth, suggesting that one or more components of the regulatory pathway that operate in conjunction with ANR1 in lateral roots may be absent in the primary root tip. We have recently observed some very specific effects of low concentrations of glutamate on root growth, resulting in significant changes in root architecture. Experimental evidence suggests that this response involves the sensing of extracellular glutamate by root tip cells. We are currently investigating the possible role of plant ionotropic glutamate receptors in this sensory mechanism.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1665
Author(s):  
Natalia Nikonorova ◽  
Evan Murphy ◽  
Cassio Flavio Fonseca de Lima ◽  
Shanshuo Zhu ◽  
Brigitte van de Cotte ◽  
...  

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


2019 ◽  
Vol 61 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Pamela A Naulin ◽  
Grace I Armijo ◽  
Andrea S Vega ◽  
Karem P Tamayo ◽  
Diana E Gras ◽  
...  

Abstract Nitrate can act as a potent signal to control growth and development in plants. In this study, we show that nitrate is able to stimulate primary root growth via increased meristem activity and cytokinin signaling. Cytokinin perception and biosynthesis mutants displayed shorter roots as compared with wild-type plants when grown with nitrate as the only nitrogen source. Histological analysis of the root tip revealed decreased cell division and elongation in the cytokinin receptor double mutant ahk2/ahk4 as compared with wild-type plants under a sufficient nitrate regime. Interestingly, a nitrate-dependent root growth arrest was observed between days 5 and 6 after sowing. Wild-type plants were able to recover from this growth arrest, while cytokinin signaling or biosynthesis mutants were not. Transcriptome analysis revealed significant changes in gene expression after, but not before, this transition in contrasting genotypes and nitrate regimes. We identified genes involved in both cell division and elongation as potentially important for primary root growth in response to nitrate. Our results provide evidence linking nitrate and cytokinin signaling for the control of primary root growth in Arabidopsis thaliana.


2019 ◽  
Vol 46 (2) ◽  
pp. 165 ◽  
Author(s):  
Xiaonan Ma ◽  
Xiaoran Zhang ◽  
Ling Yang ◽  
Mengmeng Tang ◽  
Kai Wang ◽  
...  

Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.


1979 ◽  
Vol 6 (2) ◽  
pp. 195 ◽  
Author(s):  
PB Goodwin ◽  
SC Morris

Removal of 2 mm of the primary root tip of Pisum sativum caused a complete halt to primary root elongation, but did not alter the total number of laterals formed. The auxins indole-3-acetic acid and 1-naphthaleneacetic acid, when applied to the stump in a lanolin emulsion, increased the number of lateral roots. High levels of abscisic acid and low levels of the cytokinins N6-benzylaminopurine and N6-(γ, γ-dimethylallylamino)purine, and of the gibberellins GA3 and GA7, resulted in decreased lateral root production. Kinetin was without effect. There appears to be an inverse relationship between auxins and cytokinins in root/shoot growth coordination. Auxins, which are produced in the shoot tip, inhibit lateral bud growth but promote lateral root initiation. Cytokinins, which are produced in the root tip, inhibit lateral root initiation, but promote lateral stem growth.


2014 ◽  
Vol 33 (5) ◽  
pp. 745-753 ◽  
Author(s):  
Huiyu Tian ◽  
Yuebin Jia ◽  
Tiantian Niu ◽  
Qianqian Yu ◽  
Zhaojun Ding

2020 ◽  
Author(s):  
Lina Duan ◽  
Juan Manuel Pérez-Ruiz ◽  
Francisco Javier Cejudo ◽  
José R. Dinneny

AbstractPhotosynthesis in leaves generates the fixed-carbon resources and essential metabolites that support sink tissues, such as roots [1]. One of these products, sucrose, is known to promote primary root growth, but it is not clear what other molecules may be involved and whether other stages of root system development are affected by photosynthate levels [2]. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the CYCLOPHILIN 38 (CYP38) gene, which causes an accumulation of pre-emergent stage lateral roots, with a minor effect on primary root growth. CYP38 was previously reported to maintain the stability of Photosystem II (PSII) in chloroplasts [3]. CYP38 expression is enriched in the shoot and grafting experiments show that the gene acts non-cell autonomously to promote lateral root emergence. Growth of wild-type plants under low light conditions phenocopied the cyp38 lateral root emergence phenotype as did the inhibition of PSII-dependent electron transport or NADPH production. Importantly, the cyp38 root phenotype is not rescued by exogenous sucrose, suggesting the involvement of another metabolite. Auxin (IAA) is an essential hormone promoting root growth and its biosynthesis from tryptophan is dependent on reductant generated during photosynthesis [4,5]. Both WT seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. The cyp38 lateral root defect is rescued by IAA treatment, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. Metabolomic profiling shows that the accumulation of several defense-related metabolites are also photosynthesis-dependent, suggesting that the regulation of a number of energy-intensive pathways are down-regulated when light becomes limiting.


2020 ◽  
Vol 146 ◽  
pp. 363-373 ◽  
Author(s):  
Lili Zang ◽  
Marie-Christine Morère-Le Paven ◽  
Thibault Clochard ◽  
Alexis Porcher ◽  
Pascale Satour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document