Growth and yield response of barley and chickpea to water stress under three environments in southeast Queensland. I. Light interception, crop growth and grain yield

1995 ◽  
Vol 46 (1) ◽  
pp. 17 ◽  
Author(s):  
Thomas ◽  
S Fukai

Two barley cultivars (early-maturing Corvette and late-maturing Triumph) and one cultivar of chickpea (Amethyst at Redland Bay and Borwen at Hermitage), were grown in well-watered and water stress trials in three experiments to determine how the effect of water stress on growth and yield of these crops was modified by other environmental conditions, particularly temperature. Two experiments (experiments 1 and 2) were conducted at one location (Redland Bay) with two times of sowing (April and July), while experiment 3 (June sowing) was conducted at Hermitage Research Station, which had much lower temperatures in winter. In water stress trials, rainout shelters were used to exclude rain from plots from crop establishment to approximately maturity. In both well-watered and water stress conditions, the barley crop produced a lower yield when sown in April than in mid-winter, as grain filling occurred in late winter/early spring, when radiation and temperature were low. Chickpea in the irrigated control, however, produced the lowest yield in the July sowing at Redland Bay, because of the rapid increase in temperature in spring which hastened maturity. In water stress trials chickpea produced the lowest yield at Hermitage, as water stress severely reduced crop growth after flowering. Early-maturing Corvette produced a higher grain yield than late-maturing Triumph in one water stress trial (experiment 1), when difference in maturity time was 40 days, but not in others when the difference in maturity was less than 15 days. In most crops, development of water stress was slow during early stages of growth, and severe stress developed after maximum light interception was achieved. In these cases, water stress had a small effect on light interception but a large effect on light use efficiency (total dry matter produced per unit of solar radiation intercepted). However, for the chickpea sown in April, water stress developed during leaf area expansion, and severely reduced light interception with little adverse effect on light use efficiency. The results thus suggest that whether water stress affects light interception or light use efficiency depends on the timing of water stress in relation to the canopy development.

1995 ◽  
Vol 46 (1) ◽  
pp. 49 ◽  
Author(s):  
s Thoma ◽  
S Fukai

Two cultivars of barley and one cultivar of chickpea were grown in both well-watered and water stress conditions in three experiments. Water use efficiency (biomass produced per unit evapotranspiration) was lower in chickpea than in barley, and between two barley cultivars it was higher in early-maturing Corvette than in late-maturing Triumph. These differences in water use efficiency were mostly related to the differences in transpiration efficiency (biomass produced per unit transpiration). The latter appeared to reflect the differences in biomass production under well-watered conditions, as similar differences were found in light use efficiency (biomass produced per unit of photosynthetically active radiation intercepted) among the three crops. Transpiration efficiency was inversely related to vapour pressure deficit of the air. In three experiments soil evaporation accounted for about 55% and 10-30% of total water use for chickpea and barley respectively during observation periods, when rainfall was excluded from the plots. Slow canopy development of chickpea was a reason for such a high proportion of soil evaporation, and this contributed to its lower water use efficiency compared to barley. The amount of radiation transmitted to the soil surface appeared to be an important factor determining soil evaporation, even when soil water was not fully available and limiting soil evaporation.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Rajesh Kumar Soothar ◽  
Ashutus Singha ◽  
Shakeel Ahmed Soomro ◽  
Azhar-u-ddin Chachar ◽  
Faiza Kalhoro ◽  
...  

Abstract Background Climate change and increasing demand in non-agricultural sectors profoundly affect the availability and quality of water resources for irrigated agriculture. The FAO AquaCrop simulation model provides a sound theoretical framework to investigate crop yield response to environmental stress. This model has successfully simulated crop growth and yield as influenced by varying soil moisture environments for crops. Integrating crop models that simulate the effects of water on crop yield with targeted experimentation can facilitate the development of irrigation strategies for high yield procurement and improving farm level water management and water use efficiency (WUE) under climatic condition of District Hyderabad, Sindh, Pakistan. Results This study was based on completely randomized block design with three treatments including T1 (30% soil moisture depletion), T2 (50% soil moisture depletion) and T3 (70% soil moisture depletion) with three replicates. In order to determine the crop water requirements under desired treatments, the gypsum blocks were used for computing the daily soil moisture depletion. The result shows that total volume of water applied to crop under T1, T2 and T3 was 9689, 5200 and 2045 m3 ha−1, respectively. As a result, the grain yield under T1, T2 and T3 was 13.2, 12.1 and 14.3 t ha−1, respectively. These results advocate that total yield of crop under T1 and T2 was less as compared to T3. The T3 gave higher yield and WUE compared than other treatments. On the other hand, results revealed that the simulated sunflower yields showed a good agreement with their measured under T3. The simulated grain yield was 15.5 t ha−1, while the measured yield varied from 12.1 to 14.3 t ha−1. This study suggested that WUE under T3 was more as compared to T1 and T2. The results showed that the T3 gave the highest crop yield in relation to WUE and optimize yield of sunflower crop under water scarcity. Conclusion The Aquacrop model could very well predict crop yield and WUE at T3 under experiential region for sunflower production.


2015 ◽  
Vol 38 (6) ◽  
Author(s):  
John B. O. Ogola

Crop productivity may be increased by manipulating management practices that enhance resource capture and utilisation during yield formation. This study aimed at assessing the effect of Rhizobium inoculation on growth, yield and radiation use of two chickpea cultivars at Thohoyandou, South Africa in winter 2011 and 2012. Nodulation was determined at flowering, crop biomass and grain yield were determined at harvest maturity, intercepted total radiation was determined by measuring photosynthetically active radiation above and below the crop canopy at 7-days intervals using an AccuPAR ceptometer, and radiation use efficiency was calculated as ratio of yield to intercepted total radiation. Number and weight of nodules per plant were greater with inoculation compared with the control. There were no significant differences in crop biomass, grain yield, harvest index, intercepted total radiation and radiation use efficiency between Rhizobium inoculation and the non-inoculated control. The low yield and non-significant effect of Rhizobium inoculation suggest that (i) the productivity of chickpea was probably constrained by factors other than nitrogen deficiency; or (ii) there was no difference in nitrogen fixation between the inoculated and non-inoculated treatments. However, further field trials should be conducted, over several seasons, before any definite conclusions can be drawn.


2021 ◽  
Vol 13 (11) ◽  
pp. 5890
Author(s):  
Zarmeena Khan ◽  
Muhammad Habib ur Rahman ◽  
Ghulam Haider ◽  
Rabia Amir ◽  
Rao Muhammad Ikram ◽  
...  

Nitrogen (N) losses are prevalent under South East Asia’s due to high N fertilizer inputs, but low N fertilizer use efficiency. This leaves a large quantity of reactive N at risk of loss to the environment. Biochar has been found to reduce N losses across a variety of soil types, however, there is limited data available for semi-arid climates, particularly at a field-scale. Herein we present an exploration of the biological and chemical enhancement effects observed of a cotton stalk-based biochar on wheat growth and yield under arid field conditions. The biochar was treated with urea-N and biofertilizer (bio-power) in different treatment setups. The six experimental treatments included; (i) a full N dose “recommended for wheat crops in the region” (104 kg N ha−1) as a positive control; (ii) a half N dose (52 kg N ha−1); (iii) a half N dose + biofertilizer (4.94 kg ha−1) as a soil mixture; (iv) a half N dose + biofertilizer as a seed inoculation; (v) a full N dose as broadcast + biochar (5 t ha−1) inoculated with biofertilizer; and (vi) a full N dose loaded on biochar + biofertilizer applied as a soil mixture. The half dose N application or biofertilizer addition as soil mix/seed inoculated/biochar inoculation with biofertilizer caused reduced wheat growth and yield compared to the control (conventional N fertilization). However, co-application of chemically enhanced biochar (loaded with a full N dose) and biofertilizer as soil mixture significantly increased the crop growth rate (CGR) and leaf area index (LAI). A significantly higher crop growth and canopy development led to a higher light interception and radiation use efficiency (RUE) for total dry matter (TDM) and grain yield (11% greater than control) production compared to the control. A greater grain yield, observed for the full N dose loaded on biochar + biofertilizer applied as a soil mixture, is attributed to prolonged N availability as indicated by greater plant and soil N content at harvest and different crop growth stages, respectively. The present study has improved our understanding of how the application of nitrogen loaded biochar and biofertilizer as soil mixtures can synergize to positively affect wheat growth and soil-nitrogen retention under arid environmental conditions.


2021 ◽  
Author(s):  
Laura J. Williams ◽  
Ethan E. Butler ◽  
Jeannine Cavender‐Bares ◽  
Artur Stefanski ◽  
Karen E. Rice ◽  
...  

2016 ◽  
Vol 53 (2) ◽  
pp. 210-225 ◽  
Author(s):  
GUILHERME M. TORRES ◽  
ADRIAN KOLLER ◽  
RANDY TAYLOR ◽  
WILLIAM R. RAUN

SUMMARYSeed-oriented planting provides a manner to influence canopy structure. The purpose of this research was to improve maize light interception using seed-oriented planting to manipulate leaf azimuth across the row thereby minimizing leaf overlap. To achieve leaf azimuths oriented preferentially across the row, seeds were planted: (i) upright with caryopsis pointed down, parallel to the row (upright); and (ii) laying flat, embryo up, perpendicular to the row (flat). These treatments were compared to conventionally planted seeds with resulting random leaf azimuth distribution. Seed orientation effects were contrasted with three levels of plant population and two levels of hybrid specific canopy structures. Increased plant population resulted in greater light interception but yield tended to decrease as plant population increased. The planophile hybrid produced consistently greater yields than the erectophile hybrid. The difference between planophile and erectophile hybrids ranged from 283 to 903 kg ha−1. Overall, mean grain yield for upright and flat seed placement increased by 351 and 463 kg ha−1 compared to random seed placement. Greater cumulative intercepted photosynthetically active radiation (CIPAR) was found for oriented seeds rather than random-oriented seeds. At physiological maturity upright, flat and random-oriented seeds intercepted 555, 525 and 521 MJ m−2 of PAR, respectively. Maize yield responded positively to improved light interception and better radiation use efficiency. Under irrigated conditions, precision planting of maize increased yield by 9 to 14% compared to random-oriented seeds.


1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Thierry E. Besançon ◽  
Ranjit Riar ◽  
Ronnie W. Heiniger ◽  
Randy Weisz ◽  
Wesley J. Everman

Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1) and dicamba (280 g acid equivalent ha−1) applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.


2014 ◽  
Vol 6 (4) ◽  
pp. 188 ◽  
Author(s):  
Joseph Adigun ◽  
A. O. Osipitan ◽  
Segun Toyosi Lagoke ◽  
Raphael Olusegun Adeyemi ◽  
Stephen Olaoluwa Afolami

Weed problem appears to be the most deleterious factor causing between 25 and 60% reduction in potential yield of cowpea. Field trials were therefore conducted to study the effect of inter-row spacing and period of weed interference on growth and yield of cowpea (Vigna unguiculata (L) Walp) at the Teaching and Research Farm of the Federal University of Agriculture, Abeokuta (07° 15'; 03° 25' E) in South Western Nigeria during the early and late wet seasons of 2009. The experiment consisted of eight main plots of weed interference which included initial weed removal for 3, 6, 9, and 12 weeks after sowing (WAS) and subsequently weed –infested until harvest as well as initial weed infestation for corresponding periods and thereafter kept weed free until harvest. There were also sub-plot treatments of three inter-row spacing of 60, 75, and 90 cm. All treatments in different combinations were laid out in a split-plot design with three replications. In both trials, the use of inter-row spacing of 60 cm resulted in significant reduction in weed growth as evident in lower weed dry matter production and subsequent higher cowpea pod and grain yields than those of 75 and 90 cm inter-row spacing. Initial weed infestation of up to 3 WAS did not have any adverse effect on crop growth and cowpea grain yields provided the weeds were subsequently removed. On the other hand, cowpea grain yield loss was not significantly averted by keeping the crop weed free for only 3 WAS without subsequent weed removal. In this study, initial weed-infestation for 6 WAS and beyond significantly depressed various crop growth parameter and cowpea grain yield compared with the crop kept weed free throughout its life cycle. In order to obtain optimum yields similar to that of the weed free cowpea field, it was required to keep the crop weed free for 6 WAS and beyond. However, frequent weeding beyond 9 weeks after sowing did not improve cowpea yield significantly and as a matter of fact it may even result in reduction of cowpea grain yield due to mechanical damage of hoe weeding. The practical implication of this finding is that early weeding starting from 3 WAS is very crucial for cowpea production while the critical period of weed removal for optimum yield in cowpea is between 3 and 9 WAS in the forest-savannah transitional zone of south Western Nigeria.


2020 ◽  
Author(s):  
Yaojun Zhang ◽  
Jiaqi Ding ◽  
Hong Wang ◽  
Lei Su ◽  
Cancan Zhao

Abstract Background: Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. Results: Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7%, 26.3%, 10.5% and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5% and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. Conclusions: The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.


Sign in / Sign up

Export Citation Format

Share Document