scholarly journals The Science Case for PILOT III: the Nearby Universe

2009 ◽  
Vol 26 (4) ◽  
pp. 415-438 ◽  
Author(s):  
J. S. Lawrence ◽  
M. C. B. Ashley ◽  
J. Bailey ◽  
D. Barrado y Navascues ◽  
T. R. Bedding ◽  
...  

AbstractPILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/infrared telescope to be located at Dome C on the Antarctic plateau. The atmospheric conditions at Dome C deliver a high sensitivity, high photometric precision, wide-field, high spatial resolution, and high-cadence imaging capability to the PILOT telescope. These capabilities enable a unique scientific potential for PILOT, which is addressed in this series of papers. The current paper presents a series of projects dealing with the nearby Universe that have been identified as key science drivers for the PILOT facility. Several projects are proposed that examine stellar populations in nearby galaxies and stellar clusters in order to gain insight into the formation and evolution processes of galaxies and stars. A series of projects will investigate the molecular phase of the Galaxy and explore the ecology of star formation, and investigate the formation processes of stellar and planetary systems. Three projects in the field of exoplanet science are proposed: a search for free-floating low-mass planets and dwarfs, a program of follow-up observations of gravitational microlensing events, and a study of infrared light-curves for previously discovered exoplanets. Three projects are also proposed in the field of planetary and space science: optical and near-infrared studies aimed at characterising planetary atmospheres, a study of coronal mass ejections from the Sun, and a monitoring program searching for small-scale Low Earth Orbit satellite debris items.

2009 ◽  
Vol 26 (4) ◽  
pp. 397-414 ◽  
Author(s):  
J. S. Lawrence ◽  
M. C. B. Ashley ◽  
A. Bunker ◽  
R. Bouwens ◽  
D. Burgarella ◽  
...  

AbstractPILOT (the Pathfinder for an International Large Optical Telescope) is a proposed 2.5-m optical/infrared telescope to be located at Dome C on the Antarctic plateau. The atmospheric conditions at Dome C deliver a high sensitivity, high photometric precision, wide-field, high spatial resolution, and high-cadence imaging capability to the PILOT telescope. These capabilities enable a unique scientific potential for PILOT, which is addressed in this series of papers. The current paper presents a series of projects dealing with the distant (redshift >1) Universe, that have been identified as key science drivers for the PILOT facility. The potential for PILOT to detect the first populations of stars to form in the early Universe, via infrared projects searching for pair-instability supernovae and gamma-ray burst afterglows, is investigated. Two projects are proposed to examine the assembly and evolution of structure in the Universe: an infrared survey searching for the first evolved galaxies at high redshift, and an optical survey aimed at characterising moderate-redshift galaxy clusters. Finally, a large-area weak-lensing survey and a program to obtain supernova infrared light-curves are proposed to examine the nature and evolution of dark energy and dark matter.


2021 ◽  
Author(s):  
Yuyang Gu ◽  
Zhiyong Guo ◽  
Wei Yuan ◽  
Mengya Kong ◽  
Yulai Liu ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Michael Prouza ◽  
Martin Jelínek ◽  
Petr Kubánek ◽  
Jan Ebr ◽  
Petr Trávníček ◽  
...  

FRAM—F/(Ph)otometric Robotic Atmospheric Monitor is one of the atmospheric monitoring instruments at the Pierre Auger Observatory in Argentina. FRAM is an optical telescope equipped with CCD cameras and photometer, and it automatically observes a set of selected standard stars. Primarily, FRAM observations are used to obtain the wavelength dependence of the light extinction. FRAM telescope is also able to observe secondary astronomical targets, and namely the detection of optical counterparts of gamma-ray bursts has already proven to be successful. Finally, a wide-field CCD camera of FRAM can be used for rapid monitoring of atmospheric conditions along the track of particularly interesting cosmic ray showers. The hardware setup of the telescope, its software system, data taking procedures, and results of analysis are described in this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Michel Herranz ◽  
Alvaro Ruibal

Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content) or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Deng ◽  
Zhuo-Fei Fan ◽  
Bin-Bin Zhao ◽  
Xing-Guang Wang ◽  
Shiyuan Zhao ◽  
...  

AbstractChaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared light chaos based on semiconductor lasers has been extensively studied and has enabled various applications. Here, we report a fully-developed hyperchaos in the mid-infrared regime, which is produced from interband cascade lasers subject to the external optical feedback. Lyapunov spectrum analysis demonstrates that the chaos exhibits three positive Lyapunov exponents. Particularly, the chaotic signal covers a broad frequency range up to the GHz level, which is two to three orders of magnitude broader than existed mid-infrared chaos solutions. The interband cascade lasers produce either periodic oscillations or low-frequency fluctuations before bifurcating to hyperchaos. This hyperchaos source is valuable for developing long-reach secure optical communication links and remote chaotic Lidar systems, taking advantage of the high-transmission windows of the atmosphere in the mid-infrared regime.


2020 ◽  
Vol 643 ◽  
pp. A113 ◽  
Author(s):  
K. Ackley ◽  
L. Amati ◽  
C. Barbieri ◽  
F. E. Bauer ◽  
S. Benetti ◽  
...  

Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS. Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger. Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups. Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger. Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.


2020 ◽  
Vol 494 (2) ◽  
pp. 2861-2874 ◽  
Author(s):  
Laura K Rogers ◽  
Siyi Xu (许偲艺) ◽  
Amy Bonsor ◽  
Simon Hodgkin ◽  
Kate Y L Su ◽  
...  

ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared.


2019 ◽  
Vol 5 (S1) ◽  
Author(s):  
Himanshu K. Banda ◽  
Anjali Shah ◽  
Gaurav K. Shah

Abstract Background Retinoschisis and retinal detachment are distinguished based on features in clinical examination. Even to skilled examiners, some cases may be diagnostic challenges. Infrared and wide-angle infrared reflectance imaging are relatively new modalities that can provide additional diagnostic information. Non-contact infrared reflectance imaging (also described as near-infrared imaging) highlights sub-retinal features which may otherwise be obscured by standard retinal photography. It is non-invasive and uses the retina’s ability to absorb, reflect or scatter infrared light to produce high quality images. Main body The aim of this review is to describe the role of wide-field infrared imaging in screening, diagnosing, and monitoring structural peripheral retinal disorders including retinoschisis, retinal detachment or combined retinoschisis rhegmatogenous detachments. Infrared imaging can also be used to monitor anterior segment inflammation. Heidelberg Wide-Field Module lens and Heidelberg Spectralis® HRA + OCT machine (Heidelberg Engineering, Heidelberg, Germany) were used to obtain noncontact, wide-field infrared images on each study eye. Pseudocolor photos were captured by Optos Optomap® (Optos, Inc, Massachusetts, USA). Conclusion Wide angle infrared imaging offers a quick, noncontact, and noninvasive way to help specialists accurately diagnose, monitor for progression, and educate patients about retinal detachment, retinoschisis and even anterior segment inflammation.


2019 ◽  
Vol 488 (3) ◽  
pp. 3866-3875 ◽  
Author(s):  
H Medeiros ◽  
J de León ◽  
D Lazzaro ◽  
M Popescu ◽  
V Lorenzi ◽  
...  

ABSTRACT The main objective of this work is to compositionally analyse the visible to near-infrared spectra of a total of six V-type candidates identified using the MOVIS (Y-J) versus (J-Ks) colour–colour plot and located outside the Vesta collisional family. We obtained visible and near-infrared spectra of these asteroids using the 2.54m Isaac Newton Telescope, the 2.5m Nordic Optical Telescope, and the 3.58m Telescopio Nazionale Galileo, all located at the El Roque de Los Muchachos Observatory (La Palma, Spain), as well as the 3.0m NASA Infrared Telescope Facility, located at the Mauna Kea Observatory in Hawaii. We computed several diagnostic spectral parameters (slopes, band centres, band depths, band area ratio, or BAR) and compared them to the ones known for HED meteorites and (4) Vesta. The taxonomic classification confirmed five out of the six candidates as V-types, leading to an identification success rate about 83 per cent. In general, the spectral parameters obtained for the five V-types are in good agreement with those of HED meteorites and (4) Vesta. The exception is asteroid (2452) Lyot, a V-type in the outer belt, located very close to (1459) Magnya, but showing distinct [Wo] and [Fs] molar contents both from Magnya and Vesta, pointing toward a diogenitic compostion. We also studied the dependency of the BAR parameter on the way it is computed (removing or not the continuum), the spectral slope, and the last point used to delimit the right wing of the absorption band at 2 μm.


Sign in / Sign up

Export Citation Format

Share Document