The potential impacts of climate change on Australian subtropical rainforest

2011 ◽  
Vol 59 (5) ◽  
pp. 440 ◽  
Author(s):  
M. J. Laidlaw ◽  
W. J. F. McDonald ◽  
R. John Hunter ◽  
D. A. Putland ◽  
R. L. Kitching

The potential for anthropogenic climate change to impact upon native vegetation has emphasised the need for monitoring and for dynamic management regimes. Potential impacts are numerous, but will likely include the upslope movement of species’ ranges and increasing in situ turnover (compositional change) within plant assemblages. By assessing the potential impacts of climate change on subtropical rainforest communities in south-east Queensland through the establishment of an altitudinal transect, we aimed to establish the baseline composition of the vegetation and to develop two hypotheses against which climate change scenarios can be tested. The study identified existing high levels of turnover across tree assemblages from low to mid elevations absent at higher elevations and we predict: (1) subtropical rainforest communities which currently sit at the level of the cloud base (800–900 m) will experience increasing floristic turnover, and (2) novel vegetation communities will emerge as species move upslope in response to a changing climate. Monitoring floristic turnover as a surrogate for shifting climatic habitats may be confounded both by a lack of knowledge regarding the underlying turnover rates of rainforest communities and by the disparity in temporal scales of tree community turnover and accelerating anthropogenic climate change. The identification of ‘break points’ in the relationship between current vegetation communities and gradients of precipitation and temperature will allow better direction of monitoring efforts.

2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2014 ◽  
Vol 955-959 ◽  
pp. 3777-3782 ◽  
Author(s):  
Xiao Feng Zhao ◽  
Bin Le Lin

We evaluated land suitability for Jatropha cultivation at a global scale under current and future climate scenarios. Areas that are suitable for Jatropha cultivation include southern South America, the west and southeast coasts of Africa, the north of South Asia, and the north and south coasts of Australia. In the predicted climate change scenarios, areas near the equator become less suitable for Jatropha cultivation, and areas further from the equator become more suitable. Our analyses suggest that the rank order of the six climate change scenarios, from the smallest to the largest effects on Jatropha cultivation, was as follows: B1, A1T/B2, A1B, A2, and A1FI.


2017 ◽  
Vol 9 (1) ◽  
pp. 156-177 ◽  
Author(s):  
Hossein Malekinezhad ◽  
Fatemeh Barzegai Banadkooki

Abstract This paper analyzes the impacts of climate change and human pressures on Yazd-Ardakan aquifer using the Hadley Centre Coupled Model, version 3 (HADCM3) circulation Model and A2 emission scenario. Water levels in the study aquifer were simulated using three-dimensional finite-difference groundwater model (MODFLOW 2000) with GMS 8.3 as pre- and postprocessing software. Input for groundwater recharge time series under the climate change scenarios were derived using a regression equation based on the cumulative deviation from mean rainfall using MATLAB. Human pressures on the aquifer were modeled through climate change impacts on water requirements of cultivated areas. Three scenarios were simulated to represent the effects of climate change and human pressures on aquifer storage and hydraulic head. Climate change and human pressures (scenario 1) will reduce aquifer storage and result in decreasing hydraulic head by −0.56 m year−1. Reduction in pumping water under scenario 2 (irrigation system modification) and scenario 3 (irrigation system modification and cropping patterns) will result in groundwater level fluctuation of about −0.32 and 0.08 m year−1, respectively. Scenario 3 is capable of restoring and protecting the groundwater resources in Yazd-Ardakan aquifer. The results of this study are useful to obtain sustainable groundwater management in Yazd-Ardakan aquifer.


2012 ◽  
Vol 15 (4) ◽  
pp. 18-32
Author(s):  
Khoi Nguyen Dao

In this paper, the author investigated the effects of climate change on streamflow in Srepok watershed. The climate change scenarios were built by downscaling method (delta change method) based on the outputs of MIROC 3.2 Hires GCM. The SWAT (Soil and Water Assessment Tool) model was used to investigate the impacts on streamflow under climate change scenarios. The calibration and validation results showed that the SWAT model was able to simulate the streamflow well. Their difference in simulating the streamflow under future climate scenarios was also investigated. Results indicated a 1.3-3.9oC increase in annual temperature and a -4.4 to -0.5% decreases in annual precipitation corresponded to a decrease in streamflow of about -7.6 to -2.8%. The large decrease in precipitation and runoff are observed in the dry season.


2012 ◽  
Vol 5 (4) ◽  
pp. 807
Author(s):  
Luciana Da Silva Mieres ◽  
Claudinéia Brazil Saldanha ◽  
Arthur Da Fontoura Tschiedel ◽  
Rogério De Lima Saldanha ◽  
Maria Angélica Gonçalves Cardoso

As alterações climáticas estão associadas a graves impactos na agricultura uma vez que o crescimento e o desenvolvimento das culturas dependem diretamente do clima e das interações solo-atmosfera. A umidade do solo é uma informação fundamental no planejamento agrícola, subsidiando a definição das datas de plantio, necessidades de irrigação e produtividades agrícolas. O presente estudo objetivou avaliar os impactos das mudanças climáticas na umidade do solo para uma região de cultura de soja do estado do Rio Grande do Sul através dos cenários estabelecidos pelo IPCC (International Panel on Climate Change). Os resultados indicaram uma tendência ao aumento da precipitação, favorecendo o aumento da taxa de umidade do solo na região do médio alto Uruguai. Em síntese, o fator de umidade do solo apresentou condições favoráveis ao desenvolvimento vegetal e pelos resultados apresentados, verifica-se que o modelo de previsão de umidade do solo, analisado em conjunto com os cenários do IPCC, são importantes ferramentas para os estudos dos impactos das mudanças climáticas na produtividade agrícola. Palavras chaves: mudanças climáticas, soja, umidade do solo.   Climate Projections of Quality Changes in Water Available on the Ground for Cultivation of Soybeans   ABSTRACT Climate change is associated with serious impacts on agriculture since the crop growth and development depend directly on the climate and soil-atmosphere interactions. Soil moisture is fundamental information in agricultural planning, helping to define the dates of planting, irrigation needs, and agricultural productivity. In this study was evaluated the impacts of climate change in moisture soil to a region of the soybean crop in the state of Rio Grande do Sul using the IPCC (International Panel on Climate Change) scenarios set. The results indicated a tendency to increased rainfall, favoring an increase in the rate of soil moisture in the region of the middle upper Uruguay. The factor of soil moisture showed favorable conditions for plant development and the results presented showed that prediction model of soil moisture analyzed in conjunction with the IPCC scenarios are important tools for studies of the impacts of climate change on agricultural productivity. Keywords: Climate change, soybean, soil moisture.


2020 ◽  
Vol 21 (10) ◽  
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
ILYAS NURSAMSI ◽  
SUTARNO SUTARNO ◽  
...  

Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, Setyono P, Indrawan M. 2020. Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas 21: 4866-4877. Selaginella is a genus of non-flowering plant that requires water as a medium for fertilization, as such, it prefers mountainous areas with high level of humidity. Such unique ecosystem of Selaginella is available in some parts of Java Island, Indonesia, especially in highland areas with altitude of more than 1,000 meters above sea level. However, most mountainous areas in Java are likely to be affected by climate change due to global warming, threatening the habitat and sustainability of Selaginella. This study aimed to investigate the impacts of climate change on the geographical distribution of Selaginella opaca Warb. and Selaginella remotifolia Spring. In doing so, we predicted the suitable habitats of both species using Species Distribution Model (SDM) tool of MaxEnt under present climate conditions and future conditions under four climate change scenarios. Species occurrence data were obtained from fieldworks conducted in 2007-2014 across Java Island (283 points: 144 and 139 points for S. opaca and S. remotifolia, respectively) and combined with secondary data from Global Biodiversity Information Facility (GBIF) (52 points: 35 and 17 points for S. opaca and S. remotifolia, respectively), and this dataset was used to model present geographical distribution using environmental and bioclimatic variables. Then, future distribution was predicted under four climate change scenarios: i.e. RCP (Representative Carbon Pathways) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 in three different time periods (2030, 2050, and 2080). The results of the models showed that the extent of suitable habitats of S. opaca and S. remotifolia will be reduced between 1.8-11.4% due to changes in climatic condition, and in the areas with high level of habitat suitability, including Mount Sumbing, Mount Sindoro and Mount Dieng (Dieng Plateau), the reduction can reach up to 60%. This study adds another context of evidence to understand the potential impacts of climate change on biodiversity, especially on climate-sensitive species, such as Selaginella, in climate-risk regions like mountainous areas of Java Island.


Author(s):  
Jianchao Liu ◽  
Wenbin Yao ◽  
Zhanglin Peng ◽  
Hangjun Wang

The effects of climate change on yield and quality for different climate regions had high uncertainty. Risk assessment is an effective measure to assess the seriousness of the projected impacts for decision-makers. The modified quality model was used to simulate integrated impacts of climate change, environment and management on wheat yield and quality. Then, the Canadian Earth System Model (CanESM2) was used to forecast the daily meteorological data, and Statistical Down Scaling Model was used for downscaling. CERES-Wheat was combined with the forecasted meteorological data to simulate the future wheat yield and grain protein concentration (GPC). The risk of wheat yield and quality in three climatic regions of Shaanxi combined with two climate change scenarios of CanESM2 were assessed. Temperature increased 0.22-3.34 °C and precipitation increased 10-60 mm for RCP4.5 and RCP8.5. Elevated temperature and precipitation had positive effects on yield in all regions. The yield risk of most regions with climate change decreased 3.8%-25.1%. The GPC risk of all regions with climate change decreased 7.3%-27.2%. Irrigation decreased yield risk greatly in all regions, while had totally different effects for the three climatic regions. Yield risk with irrigation decreased 37.7%-52.1% in different climate. In contrast to previous studies, GPC risk with irrigation increased greatly 25.8%-28.9% in humid region, 3.9%-8.8% in sub-humid region, and decreased 37.7%-52.1% in semi-arid region. Climate change decreased yield risk and GPC risk together. While irrigation decreased yield risk greatly in all regions, had totally different effects for the three climatic regions.


2021 ◽  
Vol 13 (24) ◽  
pp. 14025
Author(s):  
Fazlullah Akhtar ◽  
Usman Khalid Awan ◽  
Christian Borgemeister ◽  
Bernhard Tischbein

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.


2021 ◽  
Author(s):  
Berenger Koffi ◽  
Zilé Alex Kouadio ◽  
Affoué Berthe Yao ◽  
Kouakou Hervé Kouassi ◽  
Martin Sanchez Angulo ◽  
...  

<p>Meeting growing water needs in a context of increasing scarcity of resources due to climate change and changes in land use is a major challenge for developing countries in the coming years. The watershed of the Lobo river in Nibéhibé does not escape this dilemma. The water retention of the Lobo River and its watershed play an important role in the subsistence of the inhabitants of the region. However, the watershed is currently subject to strong human pressures mainly associated with the constant increase in human population and intensification of agricultural activities. The main objective of this study is to assess the impacts of climate change on the water resources of the Lobo River watershed at Nibéhibé in the central-western part of Côte d'Ivoire. Two climate change scenarios (RCP4.5 and RCP8.5) were established using the regional climate model RCA4 (Rossby Centre atmospheric model 4) and the flows under these scenarios were simulated by the hydrological model CEQUEAU with respect to a reference period (1986-2005). The RCA4 regional model predicts an increase of 1.27° C; 2.58° C in the horizon 2021-2040 and 2051-2070 in mean annual temperature. Rainfall would also experience a significant average annual decrease of about 6.51% and 11.15% over the period 2021-2040 and 2041-2070. As for the evolution of flows, the Cequeau model predicts a decrease in the runoff and infiltration of water on the horizon 2021-2040 and an increase in evapotranspiration over time according to the RCP4.5 scenario. However, the model predicts an increase in runoff at the expense of a decrease in REE and infiltration at the horizon 2040-2070 according to scenario RCP8.5. It appears from this study that surface flows and infiltrations, which constitute the water resources available to meet the water needs of the basin's populations, will be the most affected. The results obtained in this study are important and could contribute to guide decision making for sustainable water resource management.</p>


2017 ◽  
Vol 56 (3) ◽  
pp. 615-631 ◽  
Author(s):  
Zydi Teqja ◽  
Albert Kopali ◽  
Zamir Libohova ◽  
Phillip R. Owens

AbstractMaps of plant hardiness zones are useful tools for determining the extreme limits for the survival of plants. Exploration of projected climate change effects on hardiness zones can help identify areas most affected by climate change. Such studies are important in areas with high risks related to climate change, such as the Mediterranean Sea region. The objectives of this study were to (i) map plant hardiness zones for Albania and (ii) assess the projected effects of climate scenarios on the distribution of hardiness zones. Hardiness zones were affected by IPCC AR5 climate scenarios. The most extreme hardiness zone (6a) disappeared while a new, warmer zone (10b) appeared, reflecting rising temperature trends during the cold season. The shifts in spatial distribution of hardiness zones may represent opportunities for introducing new species to Albanian agriculture and forestry; however, the introduction of new species would require further studies on the variability of plant hardiness zones at local scales.


Sign in / Sign up

Export Citation Format

Share Document