scholarly journals Genetic Relationship and Diversity in Some Ornamental Palms Based on Proteins and Randomly Amplified Polymorphic DNA Markers

HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 338-342
Author(s):  
Antar Nasr El-Banna ◽  
Mohammed Elsayed El-Mahrouk ◽  
Mohammed Eraky El-Denary ◽  
Yaser Hassan Dewir ◽  
Yougasphree Naidoo

For the first time, genetic diversity among 14 ornamental palm accessions originating from different countries and grown in different regions in Egypt were examined. Identification of genetic variation and phylogenetic relationships in ornamental palms would be useful for its genetic identification, improvement, and conservation. Genetic polymorphism was analyzed using the randomly amplified polymorphic DNA (RAPD) as well as protein markers. The electrophoretic pattern of protein analysis produced 21 bands distributed in all accessions with molecular sizes ranging from 11.8 to 99.3 KDa. Some accessions possessed some bands, which were absent in other accessions and could be used for their identification. Furthermore, 10 RAPD selected primers were employed to determine genetic variation among the 14 palm genotypes as well as to test the effectiveness of RAPD primers as a genetic marker. RAPD analysis revealed a high level of polymorphism (100%) among the studied accessions. A total number of 310 amplified bands were generated across the studied genotypes with an average of 30 bands per primer. Cluster analysis using sequence alignment was done to generate a dendrogram verifying the relationship among the 14 studied ornamental palms, with an average similarity matrix range of 0.00 to 0.08 and 0.39 to 0.93 for RAPD and protein markers, respectively. It is concluded that, both SDS-protein and RAPD markers are equally important for genetic analysis and are suitable for the characterization of ornamental palm collection.

2008 ◽  
Vol 1 (2) ◽  
pp. 139-155 ◽  
Author(s):  
YAEL DARR

This article describes a crucial and fundamental stage in the transformation of Hebrew children's literature, during the late 1930s and 1940s, from a single channel of expression to a multi-layered polyphony of models and voices. It claims that for the first time in the history of Hebrew children's literature there took place a doctrinal confrontation between two groups of taste-makers. The article outlines the pedagogical and ideological designs of traditionalist Zionist educators, and suggests how these were challenged by a group of prominent writers of adult poetry, members of the Modernist movement. These writers, it is argued, advocated autonomous literary creation, and insisted on a high level of literary quality. Their intervention not only dramatically changed the repertoire of Hebrew children's literature, but also the rules of literary discourse. The article suggests that, through the Modernists’ polemical efforts, Hebrew children's literature was able to free itself from its position as an apparatus controlled by the political-educational system and to become a dynamic and multi-layered field.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


2021 ◽  
Vol 10 (4) ◽  
pp. 867
Author(s):  
Katarzyna Skorka ◽  
Paulina Wlasiuk ◽  
Agnieszka Karczmarczyk ◽  
Krzysztof Giannopoulos

Functional toll-like receptors (TLRs) could modulate anti-tumor effects by activating inflammatory cytokines and the cytotoxic T-cells response. However, excessive TLR expression could promote tumor progression, since TLR-induced inflammation might stimulate cancer cells expansion into the microenvironment. Myd88 is involved in activation NF-κB through TLRs downstream signaling, hence in the current study we provided, for the first time, a complex characterization of expression of TLR2, TLR4, TLR7, TLR9, and MYD88 as well as their splicing forms in two distinct compartments of the microenvironment of chronic lymphocytic leukemia (CLL): peripheral blood and bone marrow. We found correlations between MYD88 and TLRs expressions in both compartments, indicating their relevant cooperation in CLL. The MYD88 expression was higher in CLL patients compared to healthy volunteers (HVs) (0.1780 vs. 0.128, p < 0.0001). The TLRs expression was aberrant in CLL compared to HVs. Analysis of survival curves revealed a shorter time to first treatment in the group of patients with low level of TLR4(3) expression compared to high level of TLR4(3) expression in bone marrow (13 months vs. 48 months, p = 0.0207). We suggest that TLRs expression is differentially regulated in CLL but is similarly shared between two distinct compartments of the microenvironment.


Author(s):  
Marwa Hamouda

Abstract Background Silybum marianum L. Gaertn is a medicinal plant of unique pharmaceutical properties in the treatment of liver disorders and diabetic nephropathy. Biochemical (SDS-PAGE) and molecular markers such as randomly amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) technologies were used in this work to detect genetic diversity of 14 collections of Silybum marianum population in Egypt. Results The electrophoretic pattern of seed protein gave different molecular weight bands, ranging from 24 to 111 KDa with the presence of unique bands. RAPD results revealed a high level of polymorphism (73.2%) using 12 RAPD primers, but only eight of them gave reproducible polymorphic DNA pattern. Sixteen primers were used in the ISSR method; only ten of them yielded clearly identifiable bands. The percentage of polymorphism is about 80% of the studied samples. Conclusion The obtained data confirmed that SDS-protein, RAPD, and ISSR markers are important tools for genetic analysis for Silybum marianum and recommended to give accurate results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohamed A. Farag ◽  
Moamen M. Elmassry ◽  
Masahiro Baba ◽  
Renée Friedman

Abstract Previous studies have shown that the Ancient Egyptians used malted wheat and barley as the main ingredients in beer brewing, but the chemical determination of the exact recipe is still lacking. To investigate the constituents of ancient beer, we conducted a detailed IR and GC-MS based metabolite analyses targeting volatile and non-volatile metabolites on the residues recovered from the interior of vats in what is currently the world’s oldest (c. 3600 BCE) installation for large-scale beer production located at the major pre-pharaonic political center at Hierakonpolis, Egypt. In addition to distinguishing the chemical signatures of various flavoring agents, such as dates, a significant result of our analysis is the finding, for the first time, of phosphoric acid in high level probably used as a preservative much like in modern beverages. This suggests that the early brewers had acquired the knowledge needed to efficiently produce and preserve large quantities of beer. This study provides the most detailed chemical profile of an ancient beer using modern spectrometric techniques and providing evidence for the likely starting materials used in beer brewing.


Author(s):  
G.S. Agzamova ◽  
◽  
N.U. Ibragimova ◽  
Yu.A. Abdieva ◽  

Abstract: Protecting and promoting the health of workers in the mining industry is one of the most important problems of occupational pathology and health care. The structure and levels of prevention of occupational diseases are directly dependent on harmful and adverse factors of the production environment and labor process, adequately reflecting the state of production. Purpose: to study the issues of prevention of occupational and production-related diseases of mining and metallurgical plant workers. Research materials and methods: a dynamic observation of the health status of workers in the main industries of the mining and metallurgical plant (800 workers) was carried out. 92 patients with silicosis were examined. Results: Up to 92.8% of first-time occupational diseases are detected during periodic medical examinations. The prevailing sociomatic pathology is cardiovascular pathology, namely, arterial hypertension and diseases of the musculoskeletal system, mainly osteochondrosis of the spine. Prevalence of silicosis was observed in individuals with little professional experience (from 5 years old), young age and primary detection of patients in stage II silicosis, which was accompanied by respiratory failure. Conclusions: The prevention programme developed will ensure a high level of health care in terms of early diagnosis, rehabilitation and secondary prevention of both occupational and occupational diseases.


2015 ◽  
Vol 21 (1) ◽  
pp. 51-62
Author(s):  
Maja Uran Maravić ◽  
Dejan Križaj ◽  
Miha Lesjak

The purpose – Slovenian tourism organisations must constantly focus on developing variety innovations for organisations. In this paper, we present a study conducted on innovation practices in Slovenian tourism organisations. Design/methodology – In a survey conducted on Slovenia tourism organisations, we obtained data and identified their innovation performance and the innovation climate in their area of business. There are three main hypothesis tested. Findings – The research sample of 41 organisations found that most innovation in tourism organisations came through the introduction of new services (90%), followed by innovation through new organisational methods (73%), and found a high-level climate for innovation. Worse was its assessment of research activity within organisations and cooperation with external institutions (eg. universities and research institutes) and investment in innovation activities within their research and development. Results obtained from the research showed a mean value for the innovation climate-instrument of 3.83 indicating a high innovation climate for the Slovenian tourism companies included in the sample survey. Mostly, (publicly known as) more innovative active organisations responded to our survey. From such results, we find that tourism organisations included in the survey are aware of the importance of innovation, teaching organisations to communicate well and network with other organisations, are adaptable to change and engaged with their own ideas in support of the organisation's management. Originality of the research – The contribution of the research is that it has applied the generic instrument for measuring innovation climate on tourism and the first time climate is measured in Slovenia.


Author(s):  
J. Espinosa-Garcia ◽  
Jose Carlos Corchado

For the theoretical study of the title reaction, an analytical full-dimensional potential energy surface named PES-2021 was developed for the first time, by fitting high-level explicitly-correlated ab initio data. This...


2007 ◽  
Vol 22 (5) ◽  
pp. 1200-1206 ◽  
Author(s):  
R. Malewar ◽  
K.S. Kumar ◽  
B.S. Murty ◽  
B. Sarma ◽  
S.K. Pabi

The present investigation reports for the first time a dramatic decrease in the sintering temperature of elemental W from the conventional temperature of ≥2500 °C to the modest temperature range of 1700–1790 °C by making the W powder nanostructured through high-energy mechanical milling (MM) prior to sintering. The crystallite size of the initial W powder charge with a particle size of 3–4 μm could be brought down to 8 nm by MM for 5 h in WC grinding media. Further milling resulted in a high level of WC contamination, which apparently was due to work hardening and the grain refinement of W. A sintered density as high as 97.4% was achieved by sintering cold, isostatically pressed nanocrystalline (8 nm) W powder at 1790 °C for 900 min. The microstructure of the sintered rods showed the presence of deformation bands, but no cracks, within a large number of W grains. The mechanical properties, when compared with the hardness and elastic modulus, of the sintered nano-W specimen were somewhat superior to those reported for the conventional sintered W.


Sign in / Sign up

Export Citation Format

Share Document