Flower development in species of Croton (Euphorbiaceae) and its implications for floral morphological diversity in the genus

2017 ◽  
Vol 65 (7) ◽  
pp. 538 ◽  
Author(s):  
Karina Bertechine Gagliardi ◽  
Inês Cordeiro ◽  
Diego Demarco

The Euphorbiaceae are notable for floral diversity and evolutionary complexity. Croton is the second largest genus in the family and exhibits particular diversity in its flowers. The aim of this study was to investigate the floral ontogeny and structure of three Croton species with distinct morphologies, with a focus on testing the hypothesis that the filaments of female flowers, which have received different interpretations in the literature and are currently described as reduced petals, are staminodes and part of a vestigial androecium. With the ontogenetic study we can understand the origin of the organs and associate these with flower evolution in the genus. Flowers in several stages of development were analysed using light microscopy and scanning electron microscopy. In the early stage of development, the sepals are the first structures to be formed, although they do not continue to grow in female Croton fuscescens Spreng. flowers. Petals are absent in female flowers, with filamentous, petaloid structures, interpreted here as staminodes, alternating with the sepals in Croton lundianus (Didr.) Müll. Arg. In Croton sphaerogynus Baill., the staminodes are located between the nectary lobes. The stamens exhibit centripetal development in the flower bud stage, and the carpels are post-genitally connate, with differences in style branching. Besides the ontogenetic interpretation for the filamentous structures, the genus shows transitional structures that we consider evolutionary reductions. Our results can explain how developmental alterations have influenced the suppression and modification of floral organs in the genus.

1963 ◽  
Vol 11 (1) ◽  
pp. 21 ◽  
Author(s):  
LAS Johnson ◽  
BG Briggs

The sources of evidence bearing on the evolution of the Proteaceae are outlined. New cytological data are presented for Embothrium (South American), Beauprea (New Caledonian), and 15 Australian genera which are mostly tropical or subtropical and with morphological characters considered primitive. Beauprea, Buckinghamia, Opisthiolepis, Embothrium, Oreocallis, and Strangea have 2n = 22 and this number is also confirmed for Stenocarpus and Lomatia. Hollandaea, Darlingia, Cardwellia, Carnarvonia, Helicia, Hicksbeachia, Gevuina, Musgravea, and Austromuellera have 2n = 28. In all these cases the chromosomes are comparable in size with those previously described in Grevillea and other genera. Placospermum has 2n = 14 and its chromosomes are many times larger, comparable with those which have been reported in Persoonia. The palaeobotanical evidence is discussed, but does not throw much light on the detailed phylogeny or on the origin of the family, although it suggests that Proteaceae were well developed in the Upper Cretaceous period. From comparative morphology and cytology, together with considerations of distribution, ecology, and other factors, the characters of the ancestral "Proto-Proteaceae" are postulated and an evolutionary scheme of probable relationships of subfamilies, tribes, and genera is put forward, but formal taxonomic rearrangement is deferred for a later publication. Morphological features of the ovule and seed and of floral orientation are discussed. The characters and probable evolutionary trends within each individual group are dealt with in detail and form the basis of a number of proposed rearrangements in the taxonomic system. Placospermum is considered to combine many primitive morphological and cytological features, and it is excluded from both the subfamilies Proteoideae and Grevilleoideae, being thought to represent an early offshoot before the differentiation of those groups. The Proteoideae are probably polyphyletic but the Grevilleoideae represent a more close-knit assemblage. Within the subfamilies certain groups consist of clearly allied genera and appear to be monophyletic. These constitute the majority of the formally recognized tribes, viz. Proteeae (here including Synaphea and Conospermum), Grevilleeae (here restricted to Finschia, Grevillea, and Hakea), Musgraveeae (Musgravea, Austromuellera), and Banksieae. The tribe Embothrieae, here restricted to those genera of the Grevilleoideae with n = 11, shows considerable morphological diversity but is accepted for the present. It is shown that Strangea should be removed from the Grevilleeae and placed in the Embothrieae near Stenocarpus, with which it shares distinctive seed and inflorescence characters. Some isolated genera, viz. Orites (Grevilleoideae) and in particular Franklandia (Proteoideae), show marked specialization in many features and may be given tribal status. The other two tribes recognized, Persoonieae (in the Proteoideae) and Macadamieae (in the Grevilleoideae), consist of genera which, although advanced in certain respects, preserve numerous primitive features. Each of these tribes comprises a number of groups and individual genera which appear to be the result of evolutionary lines that have been independent from a very early stage. The African genus Brabeium, formerly placed in Persoonieae, is shown to be related to Macadamia. There remain certain genera, viz. Dilobeia (Proteoideae) and also Hollandaea, Knightia, Darlingia, Cardwellia, and Carnarvonia (Grevilleoideae), for which no formal grouping is at present suggested. The frequent independence of trends of specialization in individual characters is stressed, and the relationship of zygomorphy and other floral and inflorescence specializations to pollination by higher insects and birds is discussed. The primitive condition of the inflorescence is considered to have been essentially racemose, not a thyrse as recently suggested. Racemose inflorescences are found in many Proteoideae but the apparent raceme in Grevilleoideae is thought to be a reduced panicle.The phytogeography of the family is briefly discussed. There is evidence indicating a tropical origin, and therefore suggestions of southern connections between Australia and Africa are discounted, though they may have occurred between Australia and South America. Stress is placed on the need for an understanding of evolution within the family as a prerequisite to the development of theories on its position among the Angiosperms and on its historical phytogeography.


HortScience ◽  
2016 ◽  
Vol 51 (6) ◽  
pp. 697-702 ◽  
Author(s):  
Chen Xingwei ◽  
Thohirah Lee Abdullah ◽  
Sima Taheri ◽  
Nur Ashikin Psyquay Abdullah ◽  
Siti Aishah Hassan

Synsepalum dulcificum from the family Sapotaceae is known as miracle fruit and is a valuable horticultural species. All plant parts are of medicinal importance whereas the fruit known as magic berry, miracle berry, or sweet berry is consumed fresh. Surprisingly, very little is known on the species in terms of flower morphology and flower development. In this study, an observation on the flower morphology and flower development of miracle fruit has been made with the aid of microscopic techniques. Miracle fruit flower requires 100 days to develop from reproductive meristem to full anthesis. The flower development can be divided into six stages based on the size and appearance of the flower bud. The fruit with persistent style developed and ripened 90 days after anthesis. Heavy fruit drop was observed at 40–60 days after anthesis which contributed to the final fruit set of average of 5.06% per plant. Through this study, miracle fruit is strongly insect pollinated and prevents self-fertilization. A study on pollination ecology is needed to identify the pollinator for miracle fruit, as this is important in manipulating fruit loading in the future.


1998 ◽  
Vol 25 (2) ◽  
pp. 245 ◽  
Author(s):  
Yi-Hu Dong ◽  
Lesley Beuning ◽  
Kevin Davies ◽  
Deepali Mitra ◽  
Bret Morris ◽  
...  

Anthocyanin levels and the expression of six genes involved in anthocyanin biosynthesis (PAL, CHS, CHI, F3H, DFRand ANS) were studied during apple (Malus domestica Borkh.) flower development. In the petal, maximal accumulation of the six mRNAs occurred at an early stage of flower development and then declined rapidly following petal expansion. During petal development, the highest levels of CHI enzymatic activity and anthocyanin concentration appeared about one day after maximum mRNA levels of the six genes. Blocking UV or natural light (dark treatment) before flower bud break reduced the expression of the six genes and inhibited anthocyanin biosynthesis, resulting in either pink (UV block treatment) or pure white (dark treatment) apple flowers. Furthermore, the pure white flowers (dark treatment) were unable to resynthesise anthocyanins, even if they were re-exposed to light or placed under UV-B plus white light in vitrofollowing stage I of flower development. These results suggest that anthocyanin biosynthesis and the activities of these genes in the developing apple flower are controlled by both development and light and that the key stage for the photoregulation is during the early stages of development.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 757B-757
Author(s):  
Warner Orozco-Obando* ◽  
Hazel Y. Wetzstein

The general doctrine of flowering in Hydrangea is that floral induction occurs during the previous season on last year's growth and usually at the stem's terminal bud. However, Hydrangea cultivars widely differ in their relative abundance and duration of flower production. The objective of this study was to determine how developmental flowering patterns compare among different genotypes. Flowering was characterized in 18 H. macrophylla cultivars by assessing the extent of flower initiation and development in terminal and lateral buds of dormant shoots (i.e., after they have received floral inductive conditions.) Plants were managed under outdoor conditions. Dormant, 1-year-old stems were collected and characterized for caliper and length. All buds >2 mm were dissected and the vegetative or floral bud stage of development was categorized for each bud microscopically. Flower development occurred in 100% of the terminal buds for all the cultivars with the exception of `Ayesha' (33%). In contrast, lateral buds showed a wide variation in flower development. For example: `All Summer Beauty', `David Ramsey', `Kardinal', `Masja', and `Nightingale' showed high levels of floral induction (>92 % of lateral buds induced.) In contrast, `Ayesha', `Blushing Pink', `Freudenstein', and `Nigra' had 10% or fewer lateral buds with floral initials. Thus, the degree of floral induction in lateral buds varied tremendously among different cultivars. In addition, flower initiation and development were not related to the size (length and caliper) of individual buds. Thus, bud size does not appear to be a good indicator of flowering potential.


2020 ◽  
Vol 33 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Yan Luo ◽  
Bang-Zhen Pan ◽  
Lu Li ◽  
Chen-Xuan Yang ◽  
Zeng-Fu Xu

Key message Cytokinin might be an important factor to regulate floral sex at the very early stage of flower development in sacha inchi. Abstract Sacha inchi (Plukenetia volubilis, Euphorbiaceae) is characterized by having female and male flowers in a thyrse with particular differences. The mechanisms involved in the development of unisexual flowers are very poorly understood. In this study, the inflorescence and flower development of P. volubilis were investigated using light microscopy and scanning electron microscopy. We also investigated the effects of cytokinin on flower sex determination by exogenous application of 6-benzyladenine (BA) in P. volubilis. The floral development of P. volubilis was divided into eight stages, and the first morphological divergence between the male and female flowers was found to occur at stage 3. Both female and male flowers can be structurally distinguished by differences in the shape and size of the flower apex after sepal primordia initiation. There are no traces of gynoecia in male flowers or of androecia in female flowers. Exogenous application of BA effectively induced gynoecium primordia initiation and female flower development, especially at the early flower developmental stages. We propose that flower sex is determined earlier and probably occurs before flower initiation, either prior to or at inflorescence development due to the difference in the position of the female and male primordia in the inflorescence and in the time of the female and male primordia being initiated. The influence of cytokinin on female primordia during flower development in P. volubilis strongly suggests a feminization role for cytokinin in sex determination. These results indicate that cytokinin could modify the fate of the apical meristem of male flower and promote the formation of carpel primordia in P. volubilis.


Author(s):  
Menghan TAO ◽  
Ning XIAO ◽  
Xingfu ZHAO ◽  
Wenbin LIU

New energy vehicles(NEV) as a new thing for sustainable development, in China, on the one hand has faced the rapid expansion of the market; the other hand, for the new NEV users, the current NEVs cannot keep up with the degree of innovation. This paper demonstrates the reasons for the existence of this systematic challenge, and puts forward the method of UX research which is different from the traditional petrol vehicles research in the early stage of development, which studies from the user's essence level, to form the innovative product programs which meet the needs of users and being real attractive.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447f-448
Author(s):  
Millie S. Williams ◽  
Terri Woods Starman ◽  
James E. Faust

Flower growers experience decreased consumer satisfaction with plant species that cease flowering during the summer. The objective of this experiment was to characterize the heat tolerance of four specialty floral crop species in order to predict their summer performance in the different climatalogical regions of the United States. The effect of increasing temperatures on the duration of postharvest flower development was determined for Ageranthemum frutescens `Butterfly' and `Sugar Baby', Brachycome hybrid `Ultra', and Sutera cordata `Snowflake'. Plants were grown in a 18 °C greenhouse until marketable with foliage covering the container and flowers distributed evenly across the plant canopy. Plants were then placed in a phytotron to determine their heat tolerance. Temperature set points of 18, 23, 28, and 33 °C were delivered serially at 2-week intervals, starting at 18 °C. Plants were then returned to 18 °C after the 33 °C treatment. Immature flower bud, mature flower bud, flower and senesced flower numbers were collected once per week. Sutera `Snowflake', and Brachycome `Ultra' had the greatest flower number at the 23 °C temperature, decreasing in the 28 °C environment. Argeranthemum `Butterfly' and `Sugar Baby' had greatest flower number at 28 °C, but flowers were smaller and of lower quality than at 23 °C. Flower development of all cultivars ceased at 33 °C, but when plants were returned to the 18 °C production greenhouse, flower development resumed. According to normal average daily temperatures in Knoxville, Tenn., Ageranthemum frutescens `Butterfly' and `Sugar Baby' would flower until mid-June, while Brachycome hybrid `Ultra' and Sutera cordata `Snowflake' would flower until mid-May.


Author(s):  
Nicola Clark

Throughout the sixteenth century and beyond, the Howards are usually described as religiously ‘conservative’, resisting the reformist impulse of the Reformation while conforming to the royal supremacy over the Church. The women of the family have played little part in this characterization, yet they too lived through the earliest stages of the Reformation. This chapter shows that what we see is not a family following the lead of its patriarch in religious matters at this early stage of the Reformation, but that this did not stop them maintaining strong kinship relations across the shifting religious spectrum.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Danielle M. Nash ◽  
Zohra Bhimani ◽  
Jennifer Rayner ◽  
Merrick Zwarenstein

Abstract Background Learning health systems have been gaining traction over the past decade. The purpose of this study was to understand the spread of learning health systems in primary care, including where they have been implemented, how they are operating, and potential challenges and solutions. Methods We completed a scoping review by systematically searching OVID Medline®, Embase®, IEEE Xplore®, and reviewing specific journals from 2007 to 2020. We also completed a Google search to identify gray literature. Results We reviewed 1924 articles through our database search and 51 articles from other sources, from which we identified 21 unique learning health systems based on 62 data sources. Only one of these learning health systems was implemented exclusively in a primary care setting, where all others were integrated health systems or networks that also included other care settings. Eighteen of the 21 were in the United States. Examples of how these learning health systems were being used included real-time clinical surveillance, quality improvement initiatives, pragmatic trials at the point of care, and decision support. Many challenges and potential solutions were identified regarding data, sustainability, promoting a learning culture, prioritization processes, involvement of community, and balancing quality improvement versus research. Conclusions We identified 21 learning health systems, which all appear at an early stage of development, and only one was primary care only. We summarized and provided examples of integrated health systems and data networks that can be considered early models in the growing global movement to advance learning health systems in primary care.


Sign in / Sign up

Export Citation Format

Share Document