Copper(II) Complexes of a Tripyridyl Ligand: Anion-Dependent Metallosupramolecular Structures

2013 ◽  
Vol 66 (11) ◽  
pp. 1447 ◽  
Author(s):  
James E. M. Lewis ◽  
James D. Crowley

A series of copper(ii) complexes of the ligand 2,6-bis(pyridin-3-ylethynyl)pyridine have been synthesised and characterised by 1H and DOSY NMR, IR and UV-Vis spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. In solution these systems display almost identical spectroscopic properties, however the solid state structures are shown to vary widely, depending upon the choice of anion. The tetrafluoroborate salt was revealed to be a discrete Cu2L4 cage-like helicate. The tosylate salt, whilst of the same Cu2L4 stoichiometry, was shown to be a coordination polymer. Finally the nitrate salt structure was observed to be a discrete Cu2L2 metallocycle.

Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 52
Author(s):  
Maximilian Dehmel ◽  
Helmar Görls ◽  
Robert Kretschmer

Dianionic N,N-chelating ligands play a crucial role in coordination chemistry, but reports on related complexes remain limited to certain types of ligands. In here, the reactions of two diprotic ligands, i.e., a biguanide and a carbothiamide, with trimethylaluminium, are reported, which give rise to mono- and dinuclear aluminium(III) complexes. In addition, single deprotonation of the diprotic biguanide using potassium bis(trimethylsilyl)amide gives rise to a one-dimensional coordination polymer. All complexes have been fully characterized, and their solid-state structures were determined by single crystal X-ray diffraction analysis.


Synthesis ◽  
2018 ◽  
Vol 50 (15) ◽  
pp. 3041-3047 ◽  
Author(s):  
Norbert Mitzel ◽  
Philipp Niermeier ◽  
Jan-Hendrik Lamm ◽  
Marvin Linnemannstöns ◽  
Beate Neumann ◽  
...  

Starting from 10-bromo-1,8-dichloroanthracene, a series of 1,8-dichlorinated anthracene derivatives, flexibly bridged in position 10 by –Me2Si– and –Me2Si–(CH2) n –SiMe2– linker units, were synthesised. The linked anthracenes were generated by converting (1,8-dichloroanthracen-10-yl)lithium with chlorosilanes in salt-elimination reactions. The bichromophors were tested in UV light induced photo reactions. None of the new compounds yielded any intra- or intermolecular photoproduct. All α,ω-(dimethylsilyl)alkane-linked bisanthracenes decomposed to give 1,8-dichloro-9-hydroxyanthracen-10(9H)-one in the presence of oxygen. A completely different behaviour was shown by the bisanthracenyldimethylsilane, undergoing a 9,10:3′,4′-photocyclomerisation reaction. The new compounds were characterised by NMR spectroscopy, mass spectrometry and in most cases by X-ray diffraction studies.


2012 ◽  
Vol 528 ◽  
pp. 206-209 ◽  
Author(s):  
Xiu Ling Zhang ◽  
Kai Cheng ◽  
Yu Lan Song

A new coordination polymer [Mn3(IP)(4,4'-obb)3]n (1) (4,4'-obb = 4,4'-Oxybisbenzoic acid, IP = 1H-imidazo[4,5-f][1,10]-phenanthroline) was synthesized and characterized by IR, elemental analysis and X-ray diffraction. Single-crystal X-ray analyses revealed that the compound demonstrates 1D structure in which the Mn2+ centers are connected via 4,4'-obb anions into 1D chain, the chains are further connected via hydrogen - bonding and π ••• π interactions. In addition, the photoluminescence for compound 1 is also investigated in the solid state at room temperature.


2017 ◽  
Vol 73 (10) ◽  
pp. 1434-1438 ◽  
Author(s):  
Linda Kang ◽  
Genevieve Lynch ◽  
Will Lynch ◽  
Clifford Padgett

Three manganese(II)N-oxide complexes have been synthesized from the reaction of manganese(II) chloride with either pyridineN-oxide (PNO), 2-methylpyridineN-oxide (2MePNO) or 3-methylpyridineN-oxide (3MePNO). The compounds were synthesized from methanolic solutions of MnCl2·4H2O and the respectiveN-oxide, and subsequently characterized structurally by single-crystal X-ray diffraction. The compounds arecatena-poly[[aquachloridomanganese(II)]-di-μ-chlorido-[aquachloridomanganese(II)]-bis(μ-pyridineN-oxide)], [MnCl2(C5H5NO)(H2O)]nor [MnCl2(PNO)(H2O)]n(I),catena-poly[[aquachloridomanganese(II)]-di-μ-chlorido-[aquachloridomanganese(II)]-bis(μ-2-methylpyridineN-oxide)], [MnCl2(C6H7NO)(H2O)]nor [MnCl2(2MePNO)(H2O)]n(II), and bis(μ-3-methylpyridineN-oxide)bis[diaquadichloridomanganese(II)], [Mn2Cl4(C6H7NO)2(H2O)4] or [MnCl2(3MePNO)(H2O)2]2(III). The MnIIatoms are found in pseudo-octahedral environments for each of the three complexes. CompoundIforms a coordination polymer with alternating pairs of bridgingN-oxide and chloride ligands. The coordination environment is defined by two PNO bridging O atoms, two chloride bridging atoms, a terminal chloride, and a terminal water. CompoundIIalso forms a coordination polymer with a similar metal cation; however, the coordination polymer is bridged between MnIIatoms by both a single chloride and 2MePNO. The distorted octahedrally coordinated metal cation is defined by two bridging 2MePNOtransto each other, two chlorides, alsotransto one another in the equatorial (polymeric) plane, and a terminal chloride and terminal water. Finally, complexIIIforms a dimer with two bridging 3MePNOs, two terminal chlorides and two terminal waters forming the six-coordinate metal environment. All three compounds exhibit hydrogen bonding between the coordinating water(s) and terminal chlorides.


2007 ◽  
Vol 62 (10) ◽  
pp. 1339-1342 ◽  
Author(s):  
Surajit Jana ◽  
Tania Pape ◽  
Norbert W. Mitzel

The reaction of dimethylcadmium with alcohols R-OH in equimolar ratio leads to the formation of tetrameric methylcadmium alkoxides with molecular formula [(MeCd)4 (OR)4] [R = Me (1), Et (2) and iPr (3)]. These compounds have been characterised by 1H, 13C NMR and IR spectroscopy, by mass spectrometry, elemental analyses and by X-ray crystallography (for 2 and 3). The solid state structures show distorted cubane-type aggregates with Cd4O4 cores. The structural aspects and the spectroscopic characterisations of these compounds are discussed.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 982
Author(s):  
Devaraj Pandiarajan ◽  
Thomas Fox ◽  
Bernhard Spingler

The coordination chemistry of butane-2,3-dione bis (2′-pyridylhydrazone) towards the divalent first-row transition metals zinc and iron has been explored. Depending upon the conditions, the ligand in the six complexes was found to be either neutral, mono, or doubly deprotonated. The zinc(II) and iron(II) complexes were fully characterized by elemental analysis, mass spectrometry, and X-ray diffraction methods.


2021 ◽  
Author(s):  
Adedibu Clement Tella ◽  
Samson Owalude ◽  
Vincent Adimula ◽  
Adetola Oladipo ◽  
Victoria Olayemi ◽  
...  

Abstract The coordination polymer [Cu2(TDPH)4(QNX)].DMF, (QNX = Quinoxaline; TDPH = 3,3-thiodipropionic acid), has been prepared by reaction of copper acetate, TDPH, and quinoxaline. The compound was characterized by elemental analysis, FTIR spectroscopy, and single-crystal X-ray diffraction. The crystal is monoclinic with a P21/n space group and dimensions of a = 12.889(3) Å, b = 14.983(4) Å, c = 14.091(3) Å, α = 90 °, β = 90.200(11) °, γ = 90 °, V = 2721.18 (2) Å3, Z = 4. The ligands are hexagonally coordinated to the Cu(II) centre in the form of Cu2O4N with one nitrogen atom from the quinoxaline ligand, and four oxygen atoms from four TDPH molecules in a monodentate fashion. The Cu-Cu bond length was 2.642(1) and 2.629(1) Å for the Cu1----Cu1 and Cu2----Cu2 bonds. The QNX ligand bridged the two copper atoms. The catalytic reduction of 4-nitrophenol to 4-aminophenol using NaBH4 in the presence of [Cu2(TDPH)4(QNX)].DMF, as catalyst was completed within 11 minutes. The 4-aminophenol product was confirmed using 1H NMR spectroscopy.


2020 ◽  
Vol 42 (2) ◽  
pp. 249-249
Author(s):  
Guo Jun Wu Guo Jun Wu

[Cu(L)(AIP)·1.5H2O]n (1) [L= 3,5-di(benzimidazol-1-yl)pyridine, H2AIP= 5-aminoisophthalic acid] was prepared by the solvothermal reaction, which was characterized by single-crystal X–ray diffraction, infrared spectroscopy, and elemental analysis. 1 exhibits an infinite two dimensional [Cu(AIP)]n sheet parallel to (0 1 1) crystal plane. Furthermore, complex 1 displays good photocatalytic degradation of methyl blue (MB).


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5745
Author(s):  
Sergey A. Anufriev ◽  
Sergey V. Timofeev ◽  
Alexei A. Anisimov ◽  
Kyrill Yu. Suponitsky ◽  
Igor B. Sivaev

Complexation of the 8,8′-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides) [8,8′-(MeS)2-3,3′-M(1,2-C2B9H10)2]− (M = Co, Fe) with copper, silver, palladium and rhodium leads to the formation of the corresponding chelate complexes, which is accompanied by a transition from the transoid to the cisoid conformation of the bis(dicarbollide) complex. This transition is reversible and can be used in design of coordination-driven molecular switches based on transition metal bis(dicarbollide) complexes. The solid-state structures of {(Ph3P)ClPd[8,8′- (MeS)2-3,3′-Co(1,2-C2B9H10)2-κ2-S,S′]} and {(COD)Rh[8,8′-(MeS)2-3,3′-Co(1,2-C2B9H10)2-κ2-S,S′]} were determined by single crystal X-ray diffraction.


2008 ◽  
Vol 63 (3) ◽  
pp. 339-341 ◽  
Author(s):  
Ajay Venugopal ◽  
Alexander Willner ◽  
Norbert W. Mitzel

The reaction of N,O-bis(trimethylsilyl)hydroxylamine with potassium hydride in pentane affords a product of the formula {K6[OSiMe3]4[ON(SiMe3)2]2}, resulting from deprotonation followed by N-O bond cleavage and 1,2-silylshift. The compound was characterised by elemental analysis and by single crystal X-ray diffraction. The aggregate consists of a K3O3 bis-cubane core, with N(SiMe3)2 groups at the oxygen atoms shared by the two cubes, andMe3Si groups attached to the four O vertices. Two weak K···N interactions are also detected in the solid state structure.


Sign in / Sign up

Export Citation Format

Share Document