The uncatalysed, and the imidazole and o-mercaptobenzoic acid catalysed, hydrolysis of p-nitrophenyl N-benzyloxycarbonylglycinate

1969 ◽  
Vol 22 (1) ◽  
pp. 109 ◽  
Author(s):  
RW Hay ◽  
RJ Trethewey

The uncatalysed hydrolysis of p-nitrophenyl N- benzyloxycarbonylglycinate has been studied in 40% (v/v) ethanol-water over the pH range 7.6-8.5. The reaction shows a first-order dependence on the hydroxide ion concentration. The quite rapid hydrolysis (k = (4.4�0.4) x 104 1. mole-1 min-1 at 20�) may possibly indicate the formation of a 2-benzyloxyoxazoline-5-one intermediate. ��� Unlike the hydrolysis of the p-nitrophenyl esters of α-amino acids, the hydrolysis of the N-protected derivatives is not catalysed by carbon dioxide. The hydrolysis of p-nitrophenyl N- benzyloxycarbonylglycinate is, however, catalysed by imidazole in 40% v/v ethanol-water. Unprotonated imidazole (Im) is the catalytically active species. N-Benzyloxycarbonylaminoacetylimidazole has been detected spectrophotometrically as an intermediate in the reaction, indicating nucleophilic catalysis by the base. o-Mercaptobenzoic acid was also found to catalyse the hydrolysis of p-nitrophenyl N- benzyloxycarbonylglycinate. pH-rate profile studies indicate that the dianion of o-mercaptobenzoic acid is the catalytically active species, the substrate presumably hydrolysing via the thioester intermediate Z- NHCH2COSC6H4COO-, although efforts to detect such an intermediate have been unsuccessful. Some evidence for a thioester intermediate in the L- cysteine-catalysed reaction has been obtained.

1978 ◽  
Vol 56 (13) ◽  
pp. 1792-1795 ◽  
Author(s):  
Ronald Kluger ◽  
David C. Pire ◽  
Jik Chin

Dimethyl acetylphosphonate (DAP) is rapidly cleaved in water to acetate and dimethylphosphonic acid. The half time for reaction at pH 7, 25 °C is estimated to be 3 s. The reaction is first order in hydroxide ion concentration and first order in DAP concentration. Rates of reaction were measured over the pH range 3.8 to 6.5 at 25 °C, 6.5 and 7.0 at 5 °C, 4.5 to 6.5 at 35 °C, and 4.5 to 6.0 at 45 °C. The average observed second-order rate constant at 25 °C is 2.4 × 106M−1 s−1. DAP is converted rapidly to a hydrated carbonyl adduct. The mechanism for the formation of the observed products is proposed to be analogous to cleavage reactions of other carbonyl hydrates, proceeding from a monoanion conjugate in this case. The estimated rate constant for the unimolecular cleavage of the carbonyl hydrate anion is 2 × 103 s−1. The rapid hydrolysis of DAP results from energetically favourable formation of a hydrate due to the electronic effect of the phosphonate diester. This effect also promoles ionization of the hydrate. The ionized hydrate readily expels the phosphonate diester to achieve the overall rapid hydrolysis.


1979 ◽  
Vol 179 (1) ◽  
pp. 191-197 ◽  
Author(s):  
P Knight

To understand the extent of the cross-linking of proteins by the bifunctional reagent p-NN′-phenylenebismaleimide, a quantitative study of competing reactions has been undertaken. The two reactive maleimide rings of the bismaleimide are hydrolysed in mildly alkaline aqueous solutions much more rapidly than is the single maleimide ring of the monofunctional analogue N-ethylmaleimide. The kinetics of hydrolysis are second-order, depending on both imide and hydroxyl ion concentration in the pH range 8-10. The hydrolysis of the first imide ring of the bismaleimide is more rapid than the second, with second-order rate constants of 1600 M-1 . s-1 and 500 M-1 . s-1 respectively, at 25 degrees C. The half-times for hydrolysis of the first and second imide rings at pH 9.0 are therefore only 43s and 140s. Because it renders the maleimide ring unreactive towards cysteine, this rapid hydrolysis can limit the extent of cross-linking of proteins by the bismaleimide.


1984 ◽  
Vol 62 (4) ◽  
pp. 729-735 ◽  
Author(s):  
John W. Bunting ◽  
Glenn M. Kauffman

The kinetics of disproportionation and ferricyanide ion oxidation of the 10-methylacridinium cation have been measured spectrophotometrically over the pH range 9–14 in.20% CH3CN – 80% H2O (v/v) and ionic strength 1.0 at 25 °C. Disproportionation is kinetically second-order in total acridine species. The pH–rate profile is consistent with the rate-determining reaction of one acridinium cation with the pseudobase alkoxide anion derived from a second acridinium cation. Ferricyanide ion oxidation is kinetically first-order in each of ferricyanide ion and total acridine species. The pH–rate profile requires three distinct pathways for the ferricyanide ion oxidation of the 10-methylacridinium cation. For pH < 9.7, rate-determining attack of ferricyanide ion on the neutral pseudobase predominates, while for pH > 12.8 the predominant oxidation pathway involves reaction of ferricyanide ion with the pseudobase alkoxide ion. Between pH 9.7 and 12.8, the major oxidation pathway involves initial disproportionation of the acridinium cation followed by ferricyanide ion oxidation of the 9,10-dihydro-10-methylacridine product. This latter route accounts for a maximum of 69% of the total ferricyanide ion oxidation at pH 11.1.


2004 ◽  
Vol 82 (3) ◽  
pp. 409-417 ◽  
Author(s):  
Qing-Chun Ge ◽  
Yan-He Guo ◽  
Hai Lin ◽  
Dong-Zhao Gao ◽  
Hua-Kuan Lin ◽  
...  

Potentiometric determination shows that trinuclear Zn(II) complexes of the four tripods 1,3,5-tri(2′,5′-diazahexyl)benzene (L1), 1,3,5-tri(2′,5′-diazaheptyl)benzene (L2), 1,3,5-tri(2′,5′-diazaoctyl)benzene (L3), and 1,3,5-tri(2′,5′-diazanonyl)benzene (L4) could be potential hydrolytic catalysts. CH3CN solutions containing [3Zn:L]T (0.5~2 × 10–3 mol·dm–3) with I = 0.10 mol·dm–3 of KNO3 and Good's buffer (10% volume fraction) were studied for the catalyzing hydrolysis of p-nitrophenyl acetate (NA, 0.5~2 × 10–3 mol·dm–3), at 298 K, in the 6.5–8.2 pH range. The observed rate constants, kobs, fit the equilibrium equation kobs = kcom [3Zn:L]T + kOH[OH–] + k0. The sigmoid pH~kcom profiles for NA hydrolysis suggest that either the Zn(II)-bound hydroxyl or the Zn(II)-bound water forms of the catalysts can be the active species. The observed second-order rate constants are 0.0082, 0.011, 0.0059, and 0.0019 mol–1·dm3·s–1 for the four Zn3L–H2O complexes (kA) and 0.342, 0.257, 0.382, and 0.091 mol–1·dm3·s–1 for the four Zn3L–OH- groups (kB), respectively. However, under the condition that [NA] = 0.5 × 10–3 mol·dm–3 and [3Zn:L1]T = 2~4 × 10–2 mol·dm–3 at pH 7.6, the observed rate constants, kobs, obey the equilibrium kobs = kcom[3Zn:L]T/(1/K′ + [3Zn:L]T). This indicates that the 3:1 complex (or its deprotonated hydroxide form) mediates NA hydrolysis by nucleophilic attack of the carboxyl center with the pre-formation of a coordination bond between the carboxyl oxygen atom and the Zn(II) ion. Comparison with other models was made, and the reasons for the high catalytic efficiency of the tripodal complexes were given.Key words: tripod, Zn(II), catalysis, NA hydrolysis, polynuclear.


2020 ◽  
Author(s):  
Frederico Martins ◽  
Ángel Sanchez-Gonzalez ◽  
Jose Lanuza ◽  
Haralampos Miras ◽  
Xabier Lopez ◽  
...  

<div>Phosphoester hydrolysis is an important chemical step in DNA repair. One archetypal molecular model of phosphoesters is para-nitrophenylphosphate (pNPP). It has been shown previously that the presence of molecular metal oxide [Mo7O24]6– may catalyse the hydrolysis of pNPP through the partial decomposition of polyoxomolybdate framework resulting in a [(PO4)2Mo5O15]6– product. Real-time monitoring of the catalytic system using electrospray ionisation mass spectrometry (ESI-MS) provided a glance into the species present in the reaction mixture. Following up on the obtained spectrometric data, Density Functional Theory (DFT) calculations were carried out to characterise the hypothetical intermediate [Mo5O15(pNPP)2(H2O)6]6–</div><div>that would be required to form under the</div><div>hypothesised transformation. Surprisingly, our results point to the dimeric [Mo2O8]4- anion resulting from the decomposition of [Mo7O24]6– as the active catalytic species involved in the hydrolysis of pNPP rather than the originally assumed {Mo5O15} skeleton. A similar study was carried out involving the same species but substituting Mo by W. The mechanism involving W species showed a higher barrier and less stable products in agreement with the non-catalytic effect found in experimental results.</div>


1985 ◽  
Vol 50 (6) ◽  
pp. 1274-1282 ◽  
Author(s):  
Jaroslav Podlaha ◽  
Miloš Procházka

Hydride complexes of Rh(I) represent highly effective homogeneous catalysts of the isomerization of (Z)-dimethyl butenedioate (I) yielding (E)-dimethyl butenedioate (II) in benzene at 25 °C. The reaction catalyzed by RhH(P(C6H5)3)4 is first order both in I and in the catalyst, k = 0.51 l mol-1 s-1, Ea = 48 kJ mol-1, ΔS≠ = -46 J mol-1 K-1. At high substrate-to-catalyst ratios the catalyst is inactivated, which consists mainly in deoxygenation and decarbonylation of the E- and Z-esters with formation of methyl 2-butenoate, triphenylphosphine oxide, and carbonylocomplexes of Rh(I). Statistical redistribution of deuterium during the isomerization of equimolar mixture of I and [2,3-2H2]-I and other experimental evidence are consistent with the addition-elimination hydride mechanism of the isomerization involving σ-alkyl rhodium complexes as the intermediates and RhH(P(C6H5)3)2 as the catalytically active species.


1954 ◽  
Vol 32 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Joan Pedley Crowther ◽  
A. E. R. Westman

The rates of hydrolysis of sodium pyrophosphate and triphosphate in solution have been measured at 65.5 °C. over the pH range 2.0 to 12.0 and the phosphorus concentration range 0.10 to 0.25 atomic weights per liter. The reactions were found to be first order providing a constant concentration of hydrogen ion was maintained in the reaction flask. Both reactions are acid catalyzed but only the hydrolysis of triphosphate was found to be base catalyzed. Pyrophosphate and triphosphate apparently hydrolyze independently of each other.


1956 ◽  
Vol 34 (7) ◽  
pp. 969-981 ◽  
Author(s):  
Joan Crowther ◽  
A. E. R. Westman

The rates of hydrolysis of sodium tetrametaphosphate and tetraphosphate (in the presence of tetrametaphosphate) have been measured at 65.5 °C. over the pH range 2.5 to 13.3. Tetrametaphosphate anions hydrolyze to tetraphosphate which in turn hydrolyzes to triphosphate and orthophosphate and not to pyrophosphate. Thus the terminal oxygen bridges in the tetraphosphate and not the central one are attacked preferentially. The reactions were first order and acid catalyzed. The tetrametaphosphate hydrolysis was also base catalyzed with a minimum rate in solutions of pH approximately 7.5. The rate of hydrolysis of tetraphosphate was greater than triphosphate at the hydrogen ion concentrations studied. Hydrolysis of a sodium phosphate glass indicated that preferential attack on terminal oxygen bridges takes place also with higher polymers. However, trimetaphosphate is formed at the same time.


1978 ◽  
Vol 56 (11) ◽  
pp. 1463-1469 ◽  
Author(s):  
James D. Halliday ◽  
E. Allan Symons

The hydrolysis of N,N′-dimethylformamidine (DMFA) has been investigated in acid and alkaline aqueous media by 1H nmr; only a narrow basic pH range could be extensively studied kinetically. The pseudo-first-order kobs rose steadily from pH 11.5 to 13.0 (reaction approximately first order in OH−), then became independent of pH above 13.5 (9.3 × 10−4 s−1 at 10 °C). In contrast to many amidines, DMFA is quite stable in acid solution (estimated value of the pseudo-first-order hydrolysis rate constant is 1.4 × 10−1 s−1 at 10 °C, pH 0.05, from measurements at 100 and 140 °C). This stability is ascribed to the difficulty of eliminating the fairly strong base methylamine from the tetrahedral intermediate in acid solution.N-Methylformamide (NMF), one of the products, is formed initially as the cis isomer. A somewhat slower conversion then occurs to the thermodynamically more stable trans isomer. This unusual result is explained in terms of Deslongchamps and co-workers' theory of stereoelectronic control for the orbital-assisted breakdown of tetrahedral intermediates.


1958 ◽  
Vol 36 (4) ◽  
pp. 686-690 ◽  
Author(s):  
K. A. Holbrook ◽  
Ludovic Ouellet

The kinetics of the non-enzymatic hydrolysis of p-nitrophenyl phosphate have been studied in aqueous solution in the pH range 2.6 to 9.0 and at temperatures from 68.0°to 82.0 °C. The reaction has been followed by colorimetric measurement of the nitrophenol produced by the reaction[Formula: see text]The reaction is first order with respect to p-nitrophenyl phosphate and has an activation energy of 26.0 kcal./mole at pH 2.6. An explanation has been proposed in terms of the different rates of hydrolysis of the various ionic species of the ester present in solution.


Sign in / Sign up

Export Citation Format

Share Document