A Study of Chemical Reactions in Molton Sodium-Potassium Hydrogen Sulfate Eutectic. IV. The Reaction of Eight Oxalates

1985 ◽  
Vol 38 (7) ◽  
pp. 1123
Author(s):  
JO Sabato ◽  
SA Tariq

The reactions of oxalates of ammonium, alkali metals (Li, Na and K) and alkaline earth metals (Mg, Ca, Sr and Ba ) with sodium-potassium hydrogen sulfate eutectic were investigated. Oxalic acid was found to be an intermediate product in all these reactions. Final products of the reactions as determined by thermogravimetry , differential thermal analysis, X-ray diffraction, infrared and 'wet' chemical methods consisted of a mixture of H2O, CO, CO2 and the corresponding metal sulfate. The stoichiometries of the reactions were elucidated.

1984 ◽  
Vol 48 (348) ◽  
pp. 425-429 ◽  
Author(s):  
Richard A. Batchelor ◽  
Judith A. Kinnaird

Abstract Blue-coloured gem-quality spinel from Nigeria was analysed by wet chemical methods (using atomic absorption spectrophotometry) and investigated by X-ray diffraction. The results showed it to be gahnite (unit cell dimension a=8.091±0.003 Å) containing 36.7% ZnO, 3.58% FeO, and 0.12% MgO. The spinel has an RI of 1.79 and density between 4.4 and 4.59. Broadening of the n[111] XRD reflections indicates a measure of compositional heterogeneity. The gahnite analyses were compared with compositions of zinc spinels from other parts of the world. The analyses cluster into two distinct groups, Mg-rich spinels of metamorphic origin and Mg-poor spinels (including the Nigerian gahnite) with igneous affinities. Diadochy seems to operate within the zinc spinel structure between (Zn + Mn) and (Fe + Mg).


1994 ◽  
Vol 47 (3) ◽  
pp. 571
Author(s):  
N Mohamed ◽  
SA Tariq

The reactions of the acetates of lithium, sodium, potassium, magnesium, calcium, strontium, barium, manganese, cobalt, zinc and lead with molten sodium hydrogen sulfate-potassium hydrogen sulfate eutectic were investigated by means of thermogravimetry, differential thermal analysis, X-ray diffraction, mass spectral and infrared methods. In these acid-base reactions, the metal acetates were found to be converted into the corresponding metal sulfates, and acetic acid was the volatile product of each reaction. The temperatures and stoichiometries of the reactions have been determined.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Le Thi Vinh ◽  
Tran Thu Huong ◽  
Ha Thi Phuong ◽  
Hoang Thi Khuyen ◽  
Nguyen Manh Hung ◽  
...  

We report on the synthesis and characterization of folic acid-conjugated silica-modified TbPO4·H2O nanorods for biomedical applications. The uniform shape TbPO4·H2O nanorods with a hexagonal phase were successfully synthesized by wet chemical methods. A novel TbPO4·H2O@silica-NH2 nanocomplex was then formed by functionalizing these nanorods with silica and conjugating with biological agents. The field emission scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction reveal the morphology and structure of the nanorods, with their controllable sizes (500-800 nm in length and 50-80 nm in diameter). The Fourier transform infrared spectroscopy was employed to identify chemical substances or functional groups of the TbPO4·H2O@silica-NH2 nanocomplex. The photoluminescence spectra show the four emission lines of TbPO4·H2O@silica-NH2 in folic acid at 488, 540, 585, and 621 nm under 355 nm laser excitation, which could be attributed to the 5D4-7 F j ( J = 6 , 5 , 4 , 3 ) transitions of Tb3+. The TbPO4·H2O@silica-NH2 nanorods were conjugated with folic acid for the detection of MCF7 breast cancer cells. The obtained results show a promising possibility for the recognition of living cells that is of crucial importance in biolabeling.


2011 ◽  
Vol 312-315 ◽  
pp. 423-426 ◽  
Author(s):  
M. Mohebali ◽  
Ali Shokuhfar

Hydroxyapatite (HA) is a bioactive ceramic, employed mainly in bone tissue engineering since it exhibits superior biocompatibility and osteoconductivity. Attempts have been made to synthesize HA nanoparticles with chemical composition, morphology, crystallinity and Ca/P ratio similar to that of natural bone. While wet chemical methods are becoming more popular for synthesis of HA nanoparticles, ultrasound irradiation has shown to be an effective method to increase the rate of production and also to decrease particle size. However, process variables must be carefully selected. In the present study, HA nanoparticles with desirable characteristics have been synthesized by the aid of ultrasound irradiation and characterized by powder X-ray diffraction (XRD) and electron microscopy techniques.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Sergey Chunikhin ◽  
Oleg V Ershov ◽  
Aleksandr V. Yatsenko ◽  
Viktor Tafeenko ◽  
Natalia Evgenievna Dmitrieva ◽  
...  

Five new salts of 3,4-dicyano-2-(dicyanomethylene)-5-methyl-6-phenyl-2H-pyridin-1-ide anion (TCPy−) with lithium, sodium, potassium, rubidium and cesium cations were synthesized and structurally characterized by the single-crystal X-ray diffraction method. Solid state photoluminescence characteristics...


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


2017 ◽  
Vol 8 ◽  
pp. 1257-1265 ◽  
Author(s):  
Urszula Klekotka ◽  
Magdalena Rogowska ◽  
Dariusz Satuła ◽  
Beata Kalska-Szostko

Ferrite nanoparticles with nominal composition Me0.5Fe2.5O4 (Me = Co, Fe, Ni or Mn) have been successfully prepared by the wet chemical method. The obtained particles have a mean diameter of 11–16 ± 2 nm and were modified to improve their magnetic properties and chemical activity. The surface of the pristine nanoparticles was functionalized afterwards with –COOH and –NH2 groups to obtain a bioactive layer. To achieve our goal, two different modification approaches were realized. In the first one, glutaraldehyde was attached to the nanoparticles as a linker. In the second one, direct bonding of such nanoparticles with a bioparticle was studied. In subsequent steps, the nanoparticles were immobilized with enzymes such as albumin, glucose oxidase, lipase and trypsin as a test bioparticles. The characterization of the nanoparticles was acheived by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and Mössbauer spectroscopy. The effect of the obtained biocomposites was monitored by Fourier transform infrared spectroscopy. The obtained results show that in some cases the use of glutaraldehyde was crucial (albumin).


1998 ◽  
Vol 224 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Uwe Hoppe ◽  
Günter Walter ◽  
Rainer Kranold ◽  
Dörte Stachel ◽  
Andrea Barz

2007 ◽  
Vol 330-332 ◽  
pp. 1033-1036 ◽  
Author(s):  
M.H. Li ◽  
Shu Xin Qu ◽  
R. Shen ◽  
N. Yao ◽  
P.D. Ren ◽  
...  

Calcium phosphate (CaP) biomaterials containing Chinese medicine, Danshen (Salvia Miltiorrhiza Bunge, SMB), have been synthesized in our previous study via the wet chemical method. However, CaP biomaterials were generally synthesized in the alkaline solution. The purpose of the present study was to investigate the effect of pH on SMB and the influence of SMB on the synthesis of CaP biomaterials. The SMB solutions of different pH from 5.0 to 10.0, were scanned with the UV-VIS spectrophotometer (UV-VIS) in the wavelength ranged from 200.00 to 400.00 nm. CaP biomaterials containing SMB were synthesized from (NH4)2HPO4, Ca(NO3)2, NH4OH and SMB. The filtrates of the wet synthesis of CaP biomaterials containing SMB were measured by UV-VIS. The synthesized CaP biomaterials containing SMB were characterized by the X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The results showed that the maximum absorption peak appeared at 281.00 nm for solutions of pH 5.0, 6.0 and 7.0. Although there were a new absorption peaks as the pH were 8.0 and 9.0, the absorption curves of SMB became similar to that of SMB as pH at 7.0 after the pH were readjusted to 7.0. The absorption peak appeared an Einstein shift to 347.00 nm at pH 10.0, which did not return to 281.00 nm when the pH of SMB solution was readjusted to 7.0. The absorption peak of filtrates containing SMB of CaP biomaterials reaction system was still at 281.00 nm when their pH was 7.0 and 8.0. Moreover, SMB had no obvious effect on the phase component and functional groups of products. Hence, it could be predicted that calcium phosphate biomaterials containing SMB, such as DCPD and TCP containing SMB, which could be prepared at the pH ranged from 5.0 to 9.0.


2017 ◽  
Vol 2 (2) ◽  
pp. 89 ◽  
Author(s):  
A.A. Shoppert ◽  
I.V. Loginova ◽  
L.I. Chaikin ◽  
D.A. Rogozhnikov

<p>Fly ash, composed of mullite, hematite, amorphous silica and quartz, is a promising source for the recovery of alumina and silica. Desilication with help of NaOH and alkali fusion-leaching method and utilization of alumina and silica in the fly ash for preparation of sodalite and silica white were explored in this research. The samples were characterized by using wet chemical analysis and X-ray diffraction. The optimal extraction of SiO<sub>2</sub> from Reftinskaya power plant fly ash was 46.2% with leaching at 95 <sup>o</sup>C for 3 h. Sodalite was synthesized at 200 °C for 1 h followed water leaching at 95 °C for 1 h. Silica white with specific surface area 180-220 m2/g was prepared by carbonation of the Na<sub>2</sub>SiO<sub>3</sub> solution at 40 <sup>o</sup>C for 90-120 min. The as-prepared silica has a purity of 98,8%.</p><p>The proposed method is suitable for the comprehensive utilization of the fly ash.</p>


Sign in / Sign up

Export Citation Format

Share Document