Fertiliser N and P application on two Vertosols in north-eastern Australia. 3. Grain N uptake and yield by crop/fallow combination, and cumulative grain N removal and fertiliser N recovery in grain

2010 ◽  
Vol 61 (1) ◽  
pp. 24 ◽  
Author(s):  
David W. Lester ◽  
Colin J. Birch ◽  
Chris W. Dowling

The grain N uptake response of an opportunity cropping regime comprising summer and winter cereal and legume crops to fertiliser nitrogen (N) and phosphorus (P) applications was studied in 2 long-term experiments with contrasting durations of cultivation. At the longer cultivation duration Colonsay site (>44 years at commencement), grain N uptake increased with fertiliser N application in 15 of 17 harvested crops from 1985 to 2003. Grain sorghum on short-fallow consistently responded to applied fertiliser N at higher rates (≥80 kg N/ha) than crops grown on long-fallow where either fertiliser at nil or 40 kg N/ha maximised grain N uptake. Winter cereal response to applied N was influenced by fallow length, generally smaller responses in long fallow years, although in-crop rainfall affected this. Short-fallow crops responded up to 40 or 80 kg applied N/ha, while seasonal growing-season rainfall affected the responses of the double-crop winter cereals the most. Responses to applied fertiliser N at the shorter duration cultivation Myling site (9 years at commencement) generally occurred only under high-intensity cropping periods, or in those crops sown following periods of slower potential N mineralisation. Phosphorus fertiliser application influenced grain N uptake at both locations in some years, with winter cereals, legumes, and sorghum sown following long-fallow generally significant. Cumulative grain N uptakes in both experiments were independently influenced by fertiliser N and P treatments, P having an additive effect, increasing grain yield and grain N removed. Recovery efficiency of fertiliser N in grain, derived from cumulative N fertiliser application and grain N uptake, in general declined as amount of fertiliser N applied increased; however, as N supplies became less limiting to yield, P fertiliser generated higher fertiliser N recovery in grain. At Colonsay, RENG from cumulative uptake and removal was ≥0.48 with fertiliser P application for cumulative fertiliser N input ≤1340 kg N/ha (≈80 kg fertiliser N/ha.crop).

2009 ◽  
Vol 60 (3) ◽  
pp. 218 ◽  
Author(s):  
David W. Lester ◽  
Colin J. Birch ◽  
Chris W. Dowling

Within north-eastern Australia’s grain-production region there are few reports outlining nitrogen (N) and phosphorus (P) fertiliser effects on grain P concentration and P removal in grain. Two long-term N × P fertiliser experiments with different cultivation durations were conducted, one at ‘Colonsay’ on the Darling Downs in southern Queensland (commencing 1985 after 40 years of cultivation), and the other at ‘Myling’ on the north-west plains of New South Wales (commencing 1996 after 9 years of cultivation). Applications of N and P fertiliser independently influenced both grain P concentration and P removal for a range of summer and winter cereal and legume crops. Generally, if N fertiliser application increased grain yield, the grain P concentration decreased as grain yield increased; however, if grain yield did not respond to N fertiliser, grain P concentration was unaffected. P fertiliser applications typically increased grain P concentration. Wheat and barley grain P concentrations were generally higher in this subtropical region than reported values from temperate regions in Australia. Grain sorghum values were similar to those from subtropical areas overseas, but were greater than reported values from more tropical production zones. Mungbean and chickpea grain P concentrations were consistent with other reported values. Experimental results indicated grain P concentrations for estimating grain P removal in the northern grains region of 3400 mg/kg for sorghum, 3500 mg/kg for wheat and barley, and 4000–4500 mg/kg for mungbean. At both sites, grain P removal was greater with summer and winter cereals than with legume crops. Larger grain yields with N fertiliser application had the largest influence on grain P removal at the Colonsay site, with an additional 23.3 kg P/ha removed from plots with 80 kg N/ha applied compared with nil N over 5 analysed crops from 1998 to 2003. Grain P removal was 20.9, 17.1, and 19.7 kg P/ha in the 3 sorghum crops at this site in this period. Thus, application of P at 10 kg P/ha.crop for this 5-crop study period did not replace P removed. In the predominantly winter-cropped Myling experiment with a shorter duration of cultivation and smaller N fertiliser response, cumulative removal was more influenced by P fertiliser, with 10 kg fertiliser P/ha.crop generally sufficient to provide replacement P. These results support findings of negative P balances recently reported for grain production in this region and suggest a need for further investigation into the implications of a continuing negative P balance on the sustainability of grain production.


2010 ◽  
Vol 61 (2) ◽  
pp. 201
Author(s):  
David W. Lester ◽  
Colin J. Birch ◽  
Chris W. Dowling

Within north-eastern Australia's grain-production region there are few reports outlining nitrogen (N) and phosphorus (P) fertiliser effects on grain P concentration and P removal in grain. Two long-term N�נP fertiliser experiments with different cultivation durations were conducted, one at ?Colonsay' on the Darling Downs in southern Queensland (commencing 1985 after 40 years of cultivation), and the other at ?Myling' on the north-west plains of New South Wales (commencing 1996 after 9 years of cultivation). Applications of N and P fertiliser independently influenced both grain P concentration and P removal for a range of summer and winter cereal and legume crops. Generally, if N fertiliser application increased grain yield, the grain P concentration decreased as grain yield increased; however, if grain yield did not respond to N fertiliser, grain P concentration was unaffected. P fertiliser applications typically increased grain P concentration. Wheat and barley grain P concentrations were generally higher in this subtropical region than reported values from temperate regions in Australia. Grain sorghum values were similar to those from subtropical areas overseas, but were greater than reported values from more tropical production zones. Mungbean and chickpea grain P concentrations were consistent with other reported values. Experimental results indicated grain P concentrations for estimating grain P removal in the northern grains region of 3400�mg/kg for sorghum, 3500�mg/kg for wheat and barley, and 4000–4500�mg/kg for mungbean. At both sites, grain P removal was greater with summer and winter cereals than with legume crops. Larger grain yields with N fertiliser application had the largest influence on grain P removal at the Colonsay site, with an additional 23.3�kg�P/ha removed from plots with 80�kg�N/ha applied compared with nil N over 5 analysed crops from 1998 to 2003. Grain P removal was 20.9, 17.1, and 19.7�kg�P/ha in the 3 sorghum crops at this site in this period. Thus, application of P at 10�kg�P/ha.crop for this 5-crop study period did not replace P removed. In the predominantly winter-cropped Myling experiment with a shorter duration of cultivation and smaller N fertiliser response, cumulative removal was more influenced by P fertiliser, with 10�kg fertiliser P/ha.crop generally sufficient to provide replacement P. These results support findings of negative P balances recently reported for grain production in this region and suggest a need for further investigation into the implications of a continuing negative P balance on the sustainability of grain production.


2008 ◽  
Vol 59 (3) ◽  
pp. 247 ◽  
Author(s):  
David W. Lester ◽  
Colin J. Birch ◽  
Chris W. Dowling

Nitrogen (N) and phosphorus (P) are the 2 most limiting nutrients for grain production within the northern grains region of Australia. The response to fertiliser N and P inputs is influenced partly by the age of cultivation for cropping, following a land use change from native pasture. There are few studies that have assessed the effects of both N and P fertiliser inputs on grain yield and soil fertility in the long term on soils with contrasting ages of cultivation with fertility levels that are running down v. those already at the new equilibrium. Two long-term N × P experiments were established in the northern grains region: one in 1985 on an old (>40 years) cultivation soil on the Darling Downs, Qld; the second in 1996 on relatively new (10 years) cultivation on the north-west plains of NSW. Both experiments consisted of fertiliser N rates from nil to 120 kg N/ha.crop in factorial combination with fertiliser P from nil to 20 kg P/ha.crop. Opportunity cropping is practiced at both sites, with winter and summer cereals and legumes sown. On the old cultivation soil, fertiliser N responses were large and consistent for short-fallow crops, while long fallowing reduced the size and frequency of N response. Short-fallow sorghum in particular has responded up to the highest rate of fertiliser N (120 kg N/ha.crop). Average yield increase with fertiliser N compared with nil for 5 short-fallow sorghum crops was 1440, 2650, and 3010 kg/ha for the 40, 80, and 120 kg N/ha, respectively. Average agronomic efficiency of N for these crops was 36, 33, and 25 kg grain/kg fertiliser N applied. This contrasts with relatively new cultivation soil, where fertiliser N response was generally limited to the first 30 kg N/ha applied during periods of high cropping intensity. Response to P input was consistent for crop species, VAM sensitivity, and starting soil test P level. At both the old and new cultivation sites, generally all winter cereals responded to a 10 kg P/ha application, and more than half of long-fallow sorghum crops from both sites had increased grain yield with P application. At the old cultivation site, average yield gain for 10 kg P/ha.crop treatment was 480 kg/ha for all winter cereal sowings, and 180 kg/ha for long-fallow sorghum. Short-fallow sorghum did not show yield response to P treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helio Antonio Wood Joris ◽  
André Cesar Vitti ◽  
Risely Ferraz-Almeida ◽  
Rafael Otto ◽  
Heitor Cantarella

Abstract Long-term supply of synthetic nitrogen (N) has the potential to affect the soil N processes. This study aimed to (i) establish N response curves to find the best balance between inputs and outputs of N over four ratoons; (ii) use 15N-labeled fertilizer to estimate the N recovery efficiency of fertilizer applied in the current season as affected by the N management in the previous three years. Nitrogen rates (control, 60, 120, and 180 kg ha−1 N) were applied annually in the same plots after the 1st, 2nd, 3rd, and 4th sugarcane cycles. Sugarcane yield, N uptake, and N balance were evaluated. In the final season, 100 kg ha−1 of 15N was also applied in the microplots to evaluate the effect of previous N fertilization on N derived from fertilizer (NDF) and N derived from soil (NDS). Sugarcane yields increased linearly with the N rates over the four sugarcane-cycles. The best balance between the input of N through fertilizer and N removal by stalks was 90 kg ha−1 N in both the 1st and 2nd ratoons, and 71 kg ha−1 N in both the 3rd and 4th ratoons. Long-term application of N reduced NDF from 41 to 30 kg ha−1 and increased NDS from 160 to 180 kg ha−1 N. A key finding is that long-term N fertilization has the potential to affect soil N processes by increasing the contribution of soil N and reducing the contribution of N from fertilizer.


Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 913 ◽  
Author(s):  
C. G. Dorahy ◽  
I. J. Rochester ◽  
G. J. Blair

Abstract. Seventeen field experiments were conducted on alkaline soils in eastern Australia between 1997 and 2000 to evaluate irrigated cotton response to phosphorus (P) fertilisation. Only 3 experiments demonstrated significant (P < 0.05) increases in crop P uptake or lint yield with P application. Comparison of several soil P tests revealed that Colwell (bicarbonate) P provided the best correlation with P uptake at early flowering and lint yield. Soil P may limit cotton growth where Colwell-P concentrations are <6 mg/kg. Soil P concentrations at most of the sites were well above this critical limit, so P fertiliser application was not required. Average P uptake at physiological cut-out and P removal in seed cotton was 21 and 15 kg P/ha, respectively. Apparent P fertiliser recovery was variable (0–67%) and may have contributed to the lack of response that was observed in 14 out of the 17 experiments. It is recommended that at least 40 kg P/ha be applied to soils with Colwell-P concentrations <6 mg/kg to increase soil P reserves. Application rates of at least 20 kg P/ha are recommended where Colwell-P falls between 6 and 12 mg/kg to maintain soil P fertility.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1712-1718 ◽  
Author(s):  
Laura L. Van Eerd ◽  
Kelsey A. O'Reilly

The increase in fertilizer costs as well as environmental concerns has stimulated growers to re-evaluate their fertilizer applications to optimize nitrogen use efficiency (NUE) while maintaining crop yields and minimizing N losses. With these objectives, field trials were conducted at seven sites with five N rates (0 to 220 kg N/ha) of ammonium-nitrate applied preplant broadcast and incorporated as well as a split application treatment of 65 + 45 kg N/ha. In three contrasting years (i.e., cool/wet versus warm/dry versus average), N treatment had no observable effect on grade size distribution or brine quality. Based on the zero N control treatment, the limited yield response to fertilizer N was the result of sufficient plant-available N over the growing season. In the N budget, there was no difference between N treatments in crop N removal, but there was a positive linear relationship between N applied and the quantity of N in crop residue as well as in the soil after harvest. As expected, apparent fertilizer N recovery and N uptake efficiency were lower at 220 versus 110 kg N/ha applied preplant or split. The preplant and split applications of 110 kg N/ha were not different in yield, overall N budget, or NUE. Considering the short growing season, planting into warm soils, and the generally productive, nonresponsive soils in the region, growers should consider reducing or eliminating fertilizer N applications in machine-harvested cucumber.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 565 ◽  
Author(s):  
David W. Lester ◽  
Michael J. Bell ◽  
Kerry L. Bell ◽  
Massimiliano De Antoni Migliorati ◽  
Clemens Scheer ◽  
...  

Grain sorghum grown in north-eastern Australia’s cropping region increasingly requires nitrogen (N) fertiliser to supplement the soil available N supply. The rates of N required can be high when fallows between crop seasons are short (higher cropping intensities) and when yield potentials are high. Fertiliser N is typically applied before or at crop sowing and is vulnerable to environmental loss in the period between application and significant crop N demand due to potentially intense rainfall events in the summer-dominant rainfall environment. Nitrification inhibitors added to urea can reduce certain gaseous loss pathways but the agronomic efficacy of these products has not been explored. Urea and urea coated with the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) were compared in sorghum crops grown at five research sites over consecutive summer sorghum growing seasons in south-east Queensland. Products were compared in terms of crop responses in dry matter, N uptake and grain yield, with DMPP found to produce only subtle increases on grain yield. There was no effect on dry matter or N uptake. Outcomes suggest any advantages from use of DMPP in this region are most significant in situations where higher fertiliser application rates (>80kgN/ha) are required.


2017 ◽  
Vol 8 (2) ◽  
pp. 293-298 ◽  
Author(s):  
J. H. Grove ◽  
E. M. Pena-Yewtukhiw

There is evidence that well managed winter cereal cover crops can scavenge a goodly amount of post summer cereal harvest residual nitrogen (N), reducing nitrate-N losses to leaching or runoff. The objective of this study was to compare nitrate-N phytoremediation areas derived from five sources of information: site specific, non-site specific, or a combination. The non-site specific source was a single “composite” soil nitrate sample. The site specific sources were: a) a dense soil nitrate-N grid sampling; and b) a N removal map calculated from yield and grain N concentration, both determined at the same grid density as soil nitrate-N. The source combinations were: a) a yield map and a single grain N concentration value taken from published information; and b) a yield map and a single field “composite” grain N concentration value. The results indicated that the published grain N value was inferior to measured grain N values, and that the maize (Zea mays L.) yield map best serves as a stratification tool, delineating similar crop performance areas. Random soil sampling within those areas further optimizes residual nitrate-N recovery management. Site specific technologies can guide establishment of N scavenging cover crops to simultaneously improve resource use efficiency and water quality.


2010 ◽  
Vol 50 (1) ◽  
pp. 6 ◽  
Author(s):  
Karel Mokany ◽  
Andrew D. Moore ◽  
Phillip Graham ◽  
Richard J. Simpson

Phosphorus (P) fertilisers are one of the key tools available for increasing pasture production and the profitability of grazing enterprises. However, recent rapid changes in fertiliser price have increased the importance of developing optimal management strategies for applying P fertiliser and setting stocking rates. We applied a novel combination of process-based grazing systems modelling and randomised cash flow analyses to examine how changes in fertiliser price affect optimal fertiliser application rates and stocking rates for sheep grazing systems in south-eastern Australia, simultaneously taking into account long-term economic viability and environmental sustainability. We used ‘GrassGro’, a grazing systems decision support tool, to simulate three sheep enterprise types (Merino wethers, Merino ewes, crossbred ewes) at two locations (Hamilton, Victoria; Bookham, New South Wales). Gross margins from each year simulated in GrassGro (1966–2007) were randomised 500 times and input to a cash flow analysis that identified the financially optimal stocking rate for a range of fertiliser applications and the financial risk frontiers (combinations of stocking rate and fertiliser input for which the enterprise becomes financially unviable). For all enterprises examined at both locations, the optimal combinations of stocking rate and fertiliser application rate did not vary markedly as fertiliser price changed. Regardless of enterprise type or location, the fertiliser application rate at which the highest gross margins were achieved provided the greatest range of stocking rates that were both financially viable and environmentally sustainable. Increases in fertiliser price reduced the combinations of stocking rate and fertiliser application rate that were viable in the long term, emphasising the importance of well informed grazing management decisions.


2016 ◽  
Vol 67 (11) ◽  
pp. 1149 ◽  
Author(s):  
B. W. Dunn ◽  
T. S. Dunn ◽  
B. A. Orchard

Eight rice experiments were established at two sites in the Riverina district of south-eastern Australia in the 2012–13 and 2013–14 seasons. Two semi-dwarf rice varieties were drill-sown and nitrogen (N) fertiliser (urea) was applied at different rates at the 4-leaf stage before permanent water (pre-PW) and at panicle initiation (PI). The research assessed the impact of timing of N application on grain yield, compared the apparent N recovery of N fertiliser applied at the two stages, and determined an application strategy for N to obtain consistently high grain yields for current, semi-dwarf rice varieties when drill-sown. The apparent N recoveries achieved were 59% for N applied pre-PW and 25% for N applied at PI, averaged across years, sites, varieties and N rates. Grain yield increased significantly with increased rate of N applied at both stages, but the rate of increase from N applied at PI decreased as the rate of N applied pre-PW increased. The grain yield increase for N applied pre-PW was due to increased number of panicles at maturity and increased number of florets per panicle. Nitrogen applied at PI increased dry matter at maturity and number of florets per panicle. Application of N at PI increased grain yield over that when no N was applied; however, at low PI N-uptake levels, application of N at PI is not enough to achieve high grain yields. Therefore, sufficient N should be available to the crop from a combination of soil- and pre-PW-applied N for the crop to reach a level of N uptake at PI whereby high yields can be achieved. Nitrogen applied at PI did not appear to increase the potential for cold-induced floret sterility as much as pre-PW-applied N. Further research is required to confirm this in other seasons and for other rice varieties.


Sign in / Sign up

Export Citation Format

Share Document