Changes in the fatty acids in seeds of interspecific hybrids between Brassica napus and Brassica juncea

2011 ◽  
Vol 62 (5) ◽  
pp. 390 ◽  
Author(s):  
M. C. M. Iqbal ◽  
S. R. Weerakoon ◽  
H. D. N. Geethanjalie ◽  
P. K. D. Peiris ◽  
O. V. D. S. J. Weerasena

Mustard (Brassica juncea) accessions from Sri Lanka have a fatty acid profile (FAP) dominated by the undesired erucic acid. Therefore, it is necessary to develop B. juncea lines with canola-quality FAP, carrying reduced erucic acid (<1%) and increased oleic acid (>50%). To improve the FAP, B. juncea accessions were hybridised with spring-type canola (B. napus) varieties grown in Australia. Interspecific crosses between three B. napus cultivars (♂) and B. juncea accessions (♀) gave crossability of 50–65%. Embryo culturing on Lichter medium overcame post-germination barriers to obtain F1 plants. Culturing of ovules 21 days after pollination was successful and embryos were independent of hormones in the culture medium and directly developed into plants. Seeds of interspecific hybrids had a FAP different from parental values, particularly for oleic and erucic acids. The low oleic acid (13%) in B. juncea increased to 23–26% in hybrids and high erucic acid in B. juncea (41%) declined to 21–23% in hybrids. Linoleic and linolenic acids showed little variation from parental values. FAP of F1 hybrids shifted towards that of canola quality. The F2 seeds had zero erucic acid and high oleic acid similar to or exceeding the canola parent. Successful interspecific hybridisation of B. juncea and B. napus was confirmed by altered FAP and molecular markers. Embryo rescue in interspecific hybrids of B. juncea and B. napus is a simple, powerful biotechnological tool to increase genetic diversity and transcend species barriers to transfer desired genes, between the species. By implementing a crossing strategy, there is a potential to improve the FAP of Sri Lankan mustard towards the canola type.


2021 ◽  
Author(s):  
Shivali Sharma ◽  
Shivaji Ajinath Lavale ◽  
Benjamin Kilian

Abstract Wild Cicer species, especially those in the tertiary gene pool, carry useful alleles for chickpea improvement. The aim of this study was to evaluate the crossability and geneflow between three chickpea cultivars (as female parents) and four cross-incompatible Cicer pinnatifidum accessions (as pollen parents) from the tertiary gene pool. Ten crosses were conducted. One fully developed healthy F1 seed was harvested in vivo from the ICC 4958 × ICC 17269 cross, but the seedling developed an albino phenotype at 4–5 days after germination. Unlike other crosses, those involving the cultivar ICCV 96030 generated a large number of pods with comparatively large ovules. One albino plantlet was obtained from the ICCV 96030 × ICC 17269 cross by embryo rescue. Crosses involving ICCV 10 resulted in flower drop and poor pod set. These variable genotype-specific responses of pod, ovule, and seed development indicate that genetic factors affect the formation of interspecific hybrids. Although pod and seed formation in these interspecific crosses can be improved, geneflow between these materials is hindered by a strong genetic factor conferring albinism in the F1 hybrids.



2011 ◽  
Vol 38 (No. 3) ◽  
pp. 96-103 ◽  
Author(s):  
K. Van Laere ◽  
J. Van Huylenbroeck ◽  
E. Van Bockstaele

To introduce yellow colour in the commercial Buddleja davidii (2n = 4x = 76) assortment, an interspecific breeding programme with B. globosa (2n = 2x = 38) was started. The first step was to perform chromosome doubling in B. globosa. Two of the obtained tetraploid B. globosa plants were subsequently used as male parent in interspecific crosses with the white flowering B. davidii cv. Nanhoensis Alba. In total 182 interspecific crosses were made and 18 F1 hybrids were obtained. Genome size measurements, chromosome counts and genomic in situ hybridisation (GISH) analysis proved the hybrid nature of most of the F1 hybrids. Plant morphology also expressed hybrid characteristics. F1 seedlings inherited the yellowish flower colour from B. globosa. As for many other woody ornamentals, the creation of hybrids through interspecific hybridisation along with polyploidisation offers new opportunities for breeding in Buddleja.



2007 ◽  
Vol 145 (4) ◽  
pp. 353-365 ◽  
Author(s):  
M. DEL RÍO-CELESTINO ◽  
R. FONT ◽  
A. DE HARO-BAILÓN

SUMMARYEthiopian mustard (Brassica carinata) genotypes with different contents of oleic acid (C18:1) in the seed oil could be useful for food and industrial applications. The objectives of the present research were to study the inheritance of high C18:1 in the seed oil of different lines of Ethiopian mustard and its relationship with erucic acid content (C22:1). The low C18:1/high C22:1 mutant line L-1806, the high C18:1/high C22:1 mutant line L-482, the high C18:1/low C22:1 mutant line L-2890 and the low C18:1/very high C22:1 mutant line L-1630 were isolated after a chemical mutagen treatment of C-101 seeds (about 94 g C18:1/kg and 450 g C22:1/kg). The high C18:1/zero C22:1 line L-25X-1 was obtained by interspecific crosses of Ethiopian mustard with rapeseed and Indian mustard. Plants of lines L-2890×C-101, L-482×L-2890, L-1630×L-25X-1, L-1630×L-2890 and L-482×L-1806 were reciprocally crossed and F2 and the BC1F1 generations were obtained. Cytoplasmic effects were not observed in any of the crosses. The segregation pattern in F2 and BC1F1 populations differed in the crosses studied. The inheritance of C18:1 content in crosses segregating for this fatty acid was that expected for one (crosses between L-482×L-1806), two (L-2890×C-101) or three (L-1630×L-2890, L-1630×L-25X-1 and L-482×2890) loci. Oleic acid segregation indicated control of accumulation by two segregating genetic systems, one acting on chain elongation from C18:1 to C22:1 and the other involving desaturation from C18:1 to linoleic acid (C18:2). Accumulations of C18:1 and C22:1 were influenced by the same loci (M1, M2, E1 and E2), which control the chain elongation steps leading from C18:1 to C22:1. In addition, C18:1 was influenced by one additional locus (tentatively named OL) involved in control of desaturation of C18:1 to form C18:2. The genetic constitution of the parent lines would be OlOlE1E1E2E2m1m1m2m2 for L-2890, OlOlE1E1E2E2M1M1M2M2 for C-101, ololE1E1E2E2M1M1M2M2 for L-1630, OlOle1e1e2e2M1M1M2M2 for L-25X-1, ol1ol1E1E1E2E2M1M1M2M2 for L-482 and Ol1Ol1E1E1E2E2M1M1M2M2 for L-1806. Transgressive recombinants were obtained from the cross L-1630×L-25X-1, with about three-fold increase of the C18:1 content of the parents (>643 g/kg) and free of C22:1 content, which represent a high potential for commercial exploitation.



2018 ◽  
Vol 36 (3) ◽  
pp. 362-370
Author(s):  
André R Zeist ◽  
Juliano TV Resende ◽  
Marcos V Faria ◽  
André Gabriel ◽  
Elisa Adriano ◽  
...  

ABSTRACT Gas exchanges in species and interspecific hybrids of tomato in different environments may contribute to the development and selection of genotypes with a higher tolerance to adverse cultivation conditions. This study aimed to assess the photosynthetic characteristics of wild tomato species and the cultivar Redenção, as well as the respective F1 hybrids of interspecific crosses cultivated under two environments. The experimental design was a randomized block design with three replications and the assessment of six wild accessions, one cultivar, and the respective interspecific hybrids under two environments. At 14, 28, 42, 56, and 70 days after transplanting (DAT), gas exchange characteristics were assessed by means of a portable photosynthesis measurement system. The stomatal density of abaxial and adaxial surfaces of first-order leaflets was estimated under a protected cultivation at 56 DAT. We observed a higher influence of wild tomato species and interspecific hybrids on the assessed characteristics when compared to the cultivation environments. The accession ‘LA-716’ and the hybrid ‘Redenção’ × ‘LA-716’ presented the highest water use efficiency and the accessions ‘PI-127826’ and ‘PI-134417’ and the interspecific hybrids ‘Redenção’ × ‘PI-127826’ and ‘Redenção’ × ‘PI-134417’ presented the highest values of CO2 assimilation, transpiration, instantaneous in vivo carboxylation efficiency of Rubisco, and number of stomata on the abaxial leaflet surface. Thus, the descendants of Solanum habrochaites are an interesting alternative to breeding programs that aim to make advances in obtaining strains that exhibit improvement in their photosynthetic characteristics.



Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Agnieszka Marasek-Ciolakowska ◽  
Piotr Kamiński ◽  
Małgorzata Podwyszyńska ◽  
Urszula Kowalska ◽  
Michał Starzycki ◽  
...  

In Brassica, interspecific hybridisation plays an important role in the formation of allopolyploid cultivars. In this study, the ploidy of F1 and F2 generations resulting from interspecific hybridisation between B. oleracea inbred lines of head cabbage (B. oleracea L. var. capitata) (2n = 18) and kale (B. oleracea L. var. acephala) (2n = 18) with inbred lines of rapeseed (B. napus L.) (2n = 38) was examined by flow cytometry analysis and chromosome observation. Furthermore, the effect of meiotic polyploidisation on selected phenotypic and anatomical traits was assessed. The F1 hybrids of head cabbage × rapeseed (S3) and kale × rapeseed crosses (S20) were allotriploids with 2n = 28 chromosomes, and nuclear DNA amounts of 1.97 (S3) and 1.99 pg (S20). These values were intermediate between B. oleracea and B. napus. In interspecific hybrids of the F2 generation, which were derived after self-pollination of F1 hybrids (FS3, FS20) or by open crosses between F1 generation hybrids (FC320, FC230), the chromosome numbers were similar 2n = 56 or 2n = 55, whereas the genome sizes varied between 3.81 (FS20) and 3.95 pg 2C (FC230). Allohexaploid F2 hybrids had many superior agronomic traits compared to parental B. napus and B. oleracea lines and triploid F1 hybrids. In the generative stage, they were characterised by larger flowers and flower elements, such as anthers and lateral nectaries. F2 hybrids were male and female fertile. The pollen viability of F2 hybrids was comparable to parental genotypes and varied from 75.38% (FS3) to 88.24% (FC320), whereas in triploids of F1 hybrids only 6.76% (S3) and 13.46% (S20) of pollen grains were fertile. Interspecific hybrids of the F2 generation derived by open crosses between plants of the F1 generation (FC320, FC230) had a better ability to set seed than F2 hybrids generated from the self-pollination of F1 hybrids. In the vegetative stage, F2 plants had bigger and thicker leaves, larger stomata, and significantly thicker layers of palisade and spongy mesophyll than triploids of the F1 generation and parental lines of B. oleracea and B. napus. The allohexaploid F2 hybrids analysed in this study can be used as innovative germplasm resources for further breeding new vegetable Brassica crops at the hexaploid level.



2008 ◽  
Vol 59 (10) ◽  
pp. 918 ◽  
Author(s):  
C. J. Schelfhout ◽  
J. M. Wroth ◽  
G. Yan ◽  
W. A. Cowling

Reciprocal crosses were made between Brassica napus cv. Mystic (canola) and B. juncea JN29 (near canola quality). The F1 hybrids were selfed and backcrossed in all possible combinations to parent plants. The greatest number of selfed fertile progeny were obtained when Mystic was the maternal parent, and its F1 was most successful in backcrosses to Mystic or JN29 as maternal or paternal parent. The predominant morphological type of fertile progeny was B. napus, but several B. juncea morphological types occurred in F2 and BC1-derived lines. F2 : 3 and BC1S0 : 1 progeny showed transgressive segregation for agronomic and seed quality traits in two contrasting field environments. Several of the B. juncea-type progeny had improved seed quality (lower total seed glucosinolates and higher % oleic acid) over the B. juncea parent. Selfing of interspecific hybrids between canola-quality B. napus and B. juncea has the potential to greatly enhance genetic diversity in canola-quality progeny of both species, without the loss of donor alleles that normally occurs with repeated backcrossing.



HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 610b-610
Author(s):  
Robert H. Bors ◽  
J. Alan Sullivan

Interspecific crosses with Fragaria moschata (6x) have been hampered by ploidy level differences, poor seed set, and extremely poor seed germination. Modification of pollination practices, embryo rescue, and use of several genotypes has allowed over 80 synthetic tetraploids to be created from 14 cross combinations. Germplasm for the experiment consisted of eight selections of F. moschata (6x), two of F. nubicola (2x), and two of F. viridis (2x). Both 2x × 6x and 6x × 2x crosses were performed. Initially, negligible seed set occurred on F. nubicola and F. viridis when multiple flowers per truss were pollinated. When only one cross was performed per truss, with other flowers removed, seed set was greatly enhanced. F. moschata was much more tolerant of multiple crosses per truss. The crossing combination of F. moschata × F. nubicola gave the worst seed production. Other species combinations were capable of producing good seed set with noticeable differences between individual selections. When achenes were halved, only 1% appeared normal, 2% were underdeveloped or shrunken, the remainder were empty. Many of the malformed and most of the normal embryos germinated using the cut achene method. Achenes were surface-sterilized, cut in half, and placed on MS media with activated charcoal (3g·L–1), sucrose (30g·L–1), and no hormones. Germination occurred only from achenes from fully ripened fruit. Viable hybrids were obtained from 2x × 6x as well as 6x × 2x crosses. Fragaria viridis–F. moschata hybrids closely resembled F. moschata while F. nubicola–F. moschata hybrids were more intermediate in leaf morphology.



Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1405
Author(s):  
Mohamed Rakha ◽  
Ahmed Namisy ◽  
Jaw-Rong Chen ◽  
Mohammed E. El-Mahrouk ◽  
Elmahdy Metwally ◽  
...  

Bacterial wilt caused by Ralstonia solanacerum is one of the most economically and destructive eggplant diseases in many tropical and subtropical areas of the world. The objectives of this study were to develop interspecific hybrids, as potential rootstocks, between the eggplant (Solanum melongena) bacterial wilt resistant line EG203 and four wild accessions (S. incanum UPV1, S. insanum UPV2, S.anguivi UPV3, and S. sisymbriifolium UPV4), and to evaluate interspecific hybrids along with parents for resistance to bacterial wilt strains Pss97 and Pss2016. EG203 was crossed successfully with wild accessions UPV2 and UPV3 and produced viable seeds that germinated when wild accessions were used as a maternal parent in the crosses. In addition, viable interspecific hybrids between EG203 and UPV1 were obtained in both directions of the hybridization, although embryo rescue had to be used. Hybridity was confirmed in the four developed interspecific hybrid combinations with three SSR markers. EG203 was resistant to both strains Pss97 and Pss2016, while UPV1 and UPV3 were, respectively, resistant and moderately resistant to Pss2016. The four interspecific hybrids with UPV2, UPV3, and UPV1 were susceptible to both bacterial wilt strains, indicating that the resistance of EG203, UPV1, and UPV3 behaves as recessive in interspecific crosses. However, given the vigor of interspecific hybrids between eggplant and the three cultivated wild species, these hybrids may be of interest as rootstocks. However, the development of interspecific hybrid rootstocks resistant to bacterial wilt will probably require the identification of new sources of dominant resistance to this pathogen in the eggplant wild relatives.



2015 ◽  
Vol 95 (1) ◽  
pp. 29-41 ◽  
Author(s):  
Habibur Rahman ◽  
Rick A. Bennett ◽  
Ginette Séguin-Swartz

Rahman, H., Bennett, R. A. and Séguin-Swartz, G. 2015. Broadening genetic diversity in Brassica napus canola: Development of canola-quality spring B. napus from B. napus × B. oleracea var. alboglabra interspecific crosses. Can. J. Plant Sci. 95: 29–41. The narrow genetic base in spring Brassica napus (AACC) canola is a limitation for continued improvement of this crop. This research focused on broadening of genetic diversity in spring canola by using B. oleracea (CC). Seeds of B. oleracea contain high levels of erucic acid and glucosinolates, which are undesired in canola. Therefore, inheritance of these traits and the prospect of developing spring canola with allelic diversity introgressed from B. oleracea were investigated in B. napus×B. oleracea interspecific progenies. Zero-erucic plants in F2generation occurred at a lower frequency than expected based on segregation involving only the C-genome erucic acid alleles. Selection in F2to F3focused on zero erucic acid, while focus in later generation was for low glucosinolate and B. napus plants. In the F6, 31% zero-erucic families had low glucosinolate content. Flow cytometry analysis of the F8families showed no significant difference from the B. napus parent. Genetic diversity analysis by using simple sequence repeat markers from the C-genome chromosomes showed that the F8families received up to 54% alleles from B. oleracea. The results demonstrate the feasibility of enriching genetic diversity in B. napus canola by using B. oleracea.



2010 ◽  
Vol 36 (5) ◽  
pp. 794-800 ◽  
Author(s):  
Ai-Xia XU ◽  
Zhen HUANG ◽  
Chao-Zhi MA ◽  
En-Shi XIAO ◽  
Xiu-Sen ZHANG ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document