Agronomic studies on irrigated soybean in southern New South Wales. II. Broadening options for sowing date

2011 ◽  
Vol 62 (12) ◽  
pp. 1067 ◽  
Author(s):  
L. G. Gaynor ◽  
R. J. Lawn ◽  
A. T. James

The response of irrigated soybean to sowing date and to plant population was evaluated in field experiments over three years at Leeton, in the Murrumbidgee Irrigation Area (MIA) in southern New South Wales. The aim was to explore the options for later sowings to improve the flexibility for growing soybean in double-cropping rotations with a winter cereal. The experiments were grown on 1.83-m-wide raised soil beds, with 2, 4, or 6 rows per bed (years 1 and 2) or 2 rows per bed only (year 3). Plant population, which was manipulated by changing either the number of rows per bed (years 1 and 2) or the within-row plant spacing (year 3), ranged from 15 to 60 plants/m2 depending on the experiment. Two sowings dates, late November and late December, were compared in years 1 and 3, while in year 2, sowings in early and late January were also included. Three genotypes (early, medium, and late maturity) were grown in years 1 and 2, and four medium-maturing genotypes were grown in year 3. In general, machine-harvested seed yields were highest in the November sowings, and declined as sowing was delayed. Physiological analyses suggested two underlying causes for the yield decline as sowing date was delayed. First and most importantly, the later sown crops flowered sooner after sowing, shortening crop duration and reducing total dry matter (TDM) production. Second, in the late January sowings of the medium- and late-maturing genotypes, harvest index (HI) declined as maturity was pushed later into autumn, exposing the crops to cooler temperatures during pod filling. Attempts to offset the decline in TDM production as sowing was delayed by using higher plant populations were unsuccessful, in part because HI decreased, apparently due to greater severity of lodging. The studies indicated that, in the near term, the yield potential of current indeterminate cultivars at the late December sowing date is adequate, given appropriate management, for commercially viable double-cropping of soybean in the MIA. In the longer term, it is suggested that development of earlier maturing, lodging-resistant genotypes that retain high HI at high sowing density may allow sowing to be delayed to early January.

1992 ◽  
Vol 43 (1) ◽  
pp. 105 ◽  
Author(s):  
DF Herridge ◽  
JF Holland

The effects of tillage practice and double cropping on growth, yield and N economies of summer crops were examined in field experiments near Tamworth, northern New South Wales. Sorghum, sunflower, soybean, mungbean, cowpea and pigeon pea were sown into alkaline, black earth soils which contained either high (Site A, sown January 1983), moderate (Site B, sown December 1983), or low concentrations of nitrate (Site C, sown December 1984). During the previous winters, the land had been sown to wheat (double crop) or fallowed using cultivation or no-tillage practices. At Sites A and B, dry matter yields, averaged over all crops, were increased by 34 and 14% under no-tillage. Average increases in grain yields at the two sites were 22 and 11%. At Site C, tillage practice did not affect yields. Soybean showed the greatest responses to no-tillage. Increases in grain yields were 46, 15 and 18% for Sites A, B and C respectively. The least responsive legume was mungbean. Yields of sorghum were increased by 41% at Site A; responses at Sites B and C ranged between a 9% decrease and a 7% increase. With double cropping, grain yields were, on average, 18 (Site A), 81 (Site B) and 72% (Site C) of the yields in the cultivated (fallow) plots. However, when comparisons were made for the 12 month periods, i.e. wheat and summer crops v. fallow and summer crops, production was more than doubled at Site B and tripled at Site C, compared with the cultivated fallow. Significant in the responses to double cropping were the 192 (Site B) and 230 mm rainfalls (Site C) during November and December that replenished the soil profile with water to a depth of >0.75 m. Assessments of soybean N2 fixation using the ureide method indicated large effects of site and season on the proportion of plant N derived from N2 fixation (range, 0-0.83), on the amount of N2 fixed (range, 0-233 kg N ha-1) and on the N balance as a result of the cropping (range, -69 to +45 kg N ha-1).


1997 ◽  
Vol 48 (4) ◽  
pp. 433 ◽  
Author(s):  
L. D. J. Penrose

This study examined factors that determine ear emergence in winter wheats grown at Temora, New South Wales. Three development factors were considered: degree of winter habit, response to photoperiod, and intrinsic earliness. The effect of winter habit was first examined by using 3 pairs of related wheats that differed for spring–winter habit. Wheats were sown under irrigation from mid February to June, for up to 4 consecutive years. Ear emergence was recorded in days of the year for ease of field interpretation, and in photo-thermal time to measure delay in development. Winter habit was found to delay ear emergence throughout this sowing range. Ear emergence was then studied in 23 winter wheats that as a group encompassed a broad range for each of the 3 development factors, and these winter wheats were grouped on the basis of combinations of development factors. Differences in ear emergence between these groups guided the construction and testing of regression equations that described ear emergence as a function of sowing date and of the 3 development factors. Many combinations of factors were associated with the time of ear emergence (i.e. 1 October) at Temora that best optimises the balance between frost risk and yield potential. Combinations of development factors also influenced the flexibility of sowing time for winter wheats grown at Temora. These findings may assist the breeding of new winter wheats that can be sown over a longer period than current winter cultivars.


1987 ◽  
Vol 27 (1) ◽  
pp. 135 ◽  
Author(s):  
IA Rose

The development of new cultivars has provided impetus for soybean (Glycine max) production in northern New South Wales to expand into dryland cropping areas. These new cultivars differ from the traditional irrigated types by being indeterminate and maturing 3-4 weeks earlier. There is no information on the response of this type of cultivar to agronomic factors such as sowing date. However, knowledge of the response to sowing date is of particular importance as it allows producers to decide whether or not to take advantage of good seedbed moisture outside the most favoured range for sowing date. This study utilised irrigated conditions to examine the phenological and yield potential responses to sowing date of 6 early maturing genotypes, including the recently released cultivars. For sowing dates from early November to December the phenological responses were minor and unlikely to influence sowing date decisions, but yield responses varied among genotypes. The recently released cultivars Farrer and Valder showed similar yielding ability across sowing dates from early November to early December. However, the other 4 genotypes (Williams, Calland, Bill 55, Witch 101) showed a marked yield depression with early sowings. Thus choice of cultivar is important when deciding on sowing dates, and tests of sowing date response are necessary for cultivars released for dryland production in the future.


1992 ◽  
Vol 32 (4) ◽  
pp. 447 ◽  
Author(s):  
G Sweeney ◽  
RS Jessop ◽  
H Harris

The yields and yield structure of cultivars of triticales and bread wheats (with a range of phasic development patterns in both species) were compared in 2 field experiments at Narrabri in northern New South Wales. The experiments were performed on a grey cracking clay soil with irrigation to prevent severe moisture stress. Triticales, both early and midseason types, appeared to have reached yield parity with well-adapted wheat varieties. Meaned over the 2 experiments and all sowings, the triticales yields were 19% greater than the bread wheats. Triticales were generally superior to wheat in all components of yield of the spike (1000-grain weight, grain number/spikelet and spikelet number/spike), whilst the wheats produced more spikes per unit area. The triticales also had higher harvest indices than the wheats. The results are discussed in relation to the overall adaptability of triticale for Australian conditions.


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


1974 ◽  
Vol 14 (71) ◽  
pp. 790 ◽  
Author(s):  
JV Lovett ◽  
EM Matheson

In field experiments conducted over three years at Armidale, New South Wales, the total winter forage production by barley, oats, wheat and rye was similar. However, barley and rye tended to outyield wheat and oats at early harvests, the reverse applying at late harvests. It is suggested that these characteristics of the cereals could be exploited to meet specific seasonal requirements for dry matter production more effectively than is possible with a single species. Response to high seeding rates in forage production was similar in all cereals and was confined to a late sowing. Significant differences in in vitro digestibility over the winter period were recorded and differences were also apparent in subsequent grain yield.


1963 ◽  
Vol 3 (9) ◽  
pp. 114 ◽  
Author(s):  
JD Colwell

The effects of the different sowing rates of 20, 40, and 60 lb of seed an acre on the yield, bushel weight, composition, and response to fertilizers, of wheat grown on soils of high fertility has been studied in seven field experiments in the wheat-belt of southern New South Wales. Seasonal conditions ranged from drought to lush growing conditions and in addition one experiment was irrigated to reduce the effects of moisture stress on plant growth. Yields ranged from 10 to 70 bushels of wheat an acre and fertilizer treatments gave both positive and negative effects. For the wide range of growth conditions, variation in seeding rate had only small and non-significant effects on grain yields, with the exception of the irrigated experiment where a consistent trend indicated the need for higher seeding rates for maximum yield. Effects of the seeding rates on grain size and composition and fertilizer response, were negligible. Losses in potential grain yield, caused by the exhaustion of soil moisture reserves by excessive vegetative growth of high fertility soils before grain development has been completed, does not seem to be reduced appreciably by the use of low seeding rates.


1992 ◽  
Vol 32 (4) ◽  
pp. 465 ◽  
Author(s):  
AD Doyle ◽  
RW Kingston

The effect of sowing rate (10-110 kg/ha) on the grain yield of barley (Hordeum vulgare L.) was determined from a total of 20 field experiments conducted in northern New South Wales from 1983 to 1986. Effects of sowing rate on kernel weight and grain protein percentage were also determined from 12 experiments conducted in 1985 and 1986. Two barley varieties were tested each year. In all years fallow plus winter rainfall was equal to or greater than average. Grain yield increased with higher sowing rates in most experiments, with the response curve reaching a plateau above 60-70 kg/ha. For 13 of the 40 variety x year combinations, grain yield fell at the highest sowing rates. Only in an experiment where lodging increased substantially with higher sowing rates was there a reduction in yield at a sowing rate of 60 kg/ha. The average sowing rate for which 5 kg grain was produced per kg of seed sown was 63 kg/ha. Grain protein percentage usually fell, and kernel weight invariably fell, with increasing sowing rate. Increasing sowing rates from the normal commercial rate of 35 kg/ha to a rate of 60 kg/ha typically increased grain yields by 100-400 kg/ha, decreased kernel weight by 0.4-2.0 mg, and decreased grain protein by up to 0.5 percentage points. In no case was the grain weight reduced to below malting specifications. It was concluded that sowing rates for barley in northern New South Wales should be increased to about 60 kg/ha.


1963 ◽  
Vol 3 (10) ◽  
pp. 190 ◽  
Author(s):  
JD Colwell

The usefulness of five contrasting methods of soil analysis for estimating the phosphorus fertilizer requirements of wheat in southern New South Wales has been investigated, using yield data provided by 27 field experiments. Because the level of yield of wheat is strongly affected by seasonal environmental conditions poor correlations are obtained between soil analysis and absolute or relative yield of wheat, Much better and often significant correlations are obtained between soil analysis and the absolute increase in yield from fertilizer application. The best correlations were obtained with an 0.5M NaHCO3 extraction of soil phosphorus. A regression response surface calculated from these relationships provides a method for making direct estimates of fertilizer requirements for maximum economic return to farmers under average climatic conditions. The precision of these estimates is limited more by the flatness of the response surface and uncontrolled variation in the field data, than by inadequacies in the representation of available phosphorus by the NaHCO3 analysis.


1994 ◽  
Vol 34 (7) ◽  
pp. 933 ◽  
Author(s):  
RF Reinke ◽  
LG Lewin ◽  
RL Williams

New South Wales rice crops commonly take >180 days from sowing to harvest, and a reduction in crop duration is sought to increase the efficiency of rice production. The response of rice cultivars of differing growth duration to sowing time and N application was examined across 2 growing seasons. The highest yields were obtained at early sowing dates in each season. In season 2, the maximum yield of the short-duration cultivar M101 was not significantly different to the long-duration cultivars Calrose, Pelde, and M7, with yields >12 t/ha. However, yield of cv. M101 was significantly less than the long-duration cultivars at an early sowing date in season 1. Analysis of yield components did not clearly indicate the reason for reduced yield of the short duration cultivar. Damage by birds and mice before harvest, exacerbated by early maturity, is a possible cause.Later sowing reduced yields of all cultivars, with the short-duration cultivar-least affected. Optimum N application decreased with delay in sowing. At early sowings there was a positive yield response to increasing N, whereas at the latest sowings in each season the N response was negative for all cultivars. Where the yield response to applied N was positive, the yield component most associated with yield was the number of florets per unit area (r = 0.55). Where the yield response was negative, yield reductions were primarily caused by a reduction in the proportion of filled grains (r = 0.83). Minimum temperatures during the reproductive stage of each cultivar explained only a small amount of the variation in percentage of filled grain. Low minimum temperatures during the reproductive stage were not the sole cause of the reduction in proportion of filled grains of late-sown, high-N plots. The high yield potential of short-duration cultivars in The high yield potential of short-duration cultivars in the New South Wales rice-growing area is clearly demonstrated, as is the value of such cultivars where late sowing is unavoidable.


Sign in / Sign up

Export Citation Format

Share Document