Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures

2018 ◽  
Vol 69 (3) ◽  
pp. 317 ◽  
Author(s):  
Weverton P. Rodrigues ◽  
Jefferson R. Silva ◽  
Luciene S. Ferreira ◽  
José A. Machado Filho ◽  
Fabio A. M. M. A. Figueiredo ◽  
...  

Temperature increase assumes a prominent role in the context of expected climate change because of its significant impact on plant metabolism. High temperature can affect the carbon-assimilation pathway at both stomatal and non-stomatal levels, mainly through stomatal closure and photochemical and biochemical limitations. In general, however, plants have some ability to trigger acclimation mechanisms to cope with stressful conditions, especially if the limitations are imposed in a gradual manner during seasonal change. This study aims at evaluating changes at stomatal and photochemical levels in Coffea arabica and C. canephora under exposure to mild temperature (spring) and high temperature (summer). Potted plants were maintained in a greenhouse, watered to field capacity and subject to natural variations of light, temperature and relative humidity. In C. arabica, exposure to summer conditions decreased photosynthetic rates (A), stomatal conductance (gs) and stomatal density and increased intrinsic water-use efficiency (iWUE) compared with spring values, whereas C. canephora plants maintained similar values in both seasons. However, C. canephora presented lower A and gs during spring than C. arabica. Because photosynthetic capacity (Amax), photosynthetic performance index and membrane permeability were similar between genotypes and seasons, and maximum quantum yield (Fv/Fm) and photosynthetic pigments were not affected in C. arabica in summer, we conclude that under high temperature conditions, stomatal closure imposes the major limitation on C. arabica photosynthesis in summer. Finally, both coffee genotypes were able to avoid damage to photochemistry pathway under supra-optimal temperatures.

1998 ◽  
Vol 25 (8) ◽  
pp. 893 ◽  
Author(s):  
J. Flexas ◽  
J. M. Escalona ◽  
H. Medrano

The importance of both stomatal closure and reduced carboxylation efficiency on the photo- synthesis decline in response to long term water stress was previously measured in field-grown grapevines. Here we address the question of whether water stress affects the photochemical capacity of leaves, measuring gas-exchange rates and chlorophyll fluorescence under drought and moderate irrigat- ion at intervals through the summer season during three consecutive years. We conclude that usually water stress does not induce photoinhibition in field-grown grapevines, even when stomatal conductance and photosynthesis are reduced to very low values. Moreover, down-regulat- ion of photochemical reactions is low, leading to a general pattern of photosynthetic response to drought consistent in large reductions of stomatal conductance (g), followed by a consistent decrease of CO2 assimilation (A) but with a much lower effect on electron transport rate (ETR). In consequence, the intrinsic water-use efficiency (A/g) increased, as well as the ratio ETR/A. It is suggested that increased electron transport to alternative pathways, such as photorespiration, prevented further down-regulation of ETR under drought conditions. These results are in agreement with our previous reports for potted plants. However it is clear that, under field conditions with a much more slowly developed water stress, ETR reductions are more attenuated than in potted plants, reducing their incidence in carbon assimilation, which seems to be mainly regulated by stomatal closure.


2007 ◽  
Vol 34 (10) ◽  
pp. 918 ◽  
Author(s):  
Gregory J. Jordan ◽  
Timothy J. Brodribb

This paper examines physiological characteristics of the leaves of Agastachys odorata R.Br., a wet-climate sclerophyllous shrub with very long-lived leaves. It addresses the hypothesis that cuticles become leakier to water vapour as leaves age. Astomatous cuticular conductance, whole-leaf minimum epidermal conductance, leaf damage and accumulation of epiphylls all increased several-fold with leaf age from first year growth to 10 years of age. Maximum carbon assimilation peaked 1 year after full leaf expansion, then declined. Intrinsic water use efficiency was highest in mid-aged leaves and declined markedly in the oldest leaves. Stomatal density, stomatal size and cuticle thickness did not vary significantly among ages. The older leaves were less effective at controlling water loss, resulting in decreases in water use efficiency. A differential increase in the conductance of the stomatal surface of the leaves relative to astomatous surface suggested that stomatal leakiness was significant in leaves over five years old. Although data for other species is ambiguous, the deterioration in A. odorata appears to be consistent with changes in the oldest leaves of other species. Thus, decreasing ability to use water efficiently appears to be a consequence of accumulated damage and may contribute to the need for leaf senescence in evergreen species with little self shading.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro M. P. Correia ◽  
Anabela Bernardes da Silva ◽  
Margarida Vaz ◽  
Elizabete Carmo-Silva ◽  
Jorge Marques da Silva

Increasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C3 crops, however, the response of this important C4 crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C4–CO2 concentrating mechanism (CCM). Two genotypes of maize with contrasting levels of drought and heat tolerance, B73 and P0023, were acclimatized at high temperature (38°C versus 25°C) under well-watered (WW) or WD conditions. The photosynthetic performance was evaluated by gas exchange and chlorophyll a fluorescence, and in vitro activities of key enzymes for carboxylation (phosphoenolpyruvate carboxylase), decarboxylation (NADP-malic enzyme), and carbon fixation (Rubisco). Both genotypes successfully acclimatized to the high temperature, although with different mechanisms: while B73 maintained the photosynthetic rates by increasing stomatal conductance (gs), P0023 maintained gs and showed limited transpiration. When WD was experienced in combination with high temperatures, limited transpiration allowed water-savings and acted as a drought stress avoidance mechanism. The photosynthetic efficiency in P0023 was sustained by higher phosphorylated PEPC and electron transport rate (ETR) near vascular tissues, supplying chemical energy for an effective CCM. These results suggest that the key traits for drought and heat tolerance in maize are limited transpiration rate, allied with a synchronized regulation of the carbon assimilation metabolism. These findings can be exploited in future breeding efforts aimed at improving maize resilience to climate change.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


Alloy Digest ◽  
1956 ◽  
Vol 5 (7) ◽  

Abstract DOWMETAL HZ32XA is a magnesium-thorium-zinc-zirconium alloy having good high temperature creep resistance, and is recommended for applications at elevated temperatures. It is used in the artificially aged condition (T5). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: Mg-26. Producer or source: The Dow Chemical Company.


Alloy Digest ◽  
1972 ◽  
Vol 21 (7) ◽  

Abstract UDIMET 105 is a nickel-base alloy which was developed for service at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-175. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract CARPENTER L-605 alloy is a nonmagnetic cobalt-base alloy that has good oxidation and corrosion resistance and high strength at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-81. Producer or source: Carpenter.


Alloy Digest ◽  
1981 ◽  
Vol 30 (6) ◽  

Abstract FANSTEEL 85 METAL is a columbium-base alloy characterized by good fabricability at room temperature, good weldability and a good combination of creep strength and oxidation resistance at elevated temperatures. Its applications include missile and rocket components and many other high-temperature parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and bend strength as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-7. Producer or source: Fansteel Metallurgical Corporation. Originally published December 1963, revised June 1981.


Sign in / Sign up

Export Citation Format

Share Document