A rapid semi-quantitative procedure for screening hydrocyanic acid in white clover (Trifolium repens L.)

2001 ◽  
Vol 41 (4) ◽  
pp. 515 ◽  
Author(s):  
J. F. Ayres ◽  
R. D. Murison ◽  
A. D. Turner ◽  
S. Harden

The presence of cyanogenic glucosides in white clover (Trifolium repens L.) is an anti-nutritional factor due to the potential for cyanide to pre-dispose selenium deficiency in grazing animals. Considerable genotypic variation in cyanogenesis occurs in white clover and it is important that highly cyanogenic white clover lines are identified to ensure that germpasm used in breeding programs does not lead to the release of cultivars that exceed safe levels. A procedure for rapid semi-quantitative screening of large white clover germplasm collections is described. This procedure is based on the picrate assay and utilises computer imagery and calibration relationships between spectral intensity (red, green, blue bands) of the colour reaction on picrate paper with cyanide in standard solutions to predict hydrocyanic acid concentration in white clover leaf.

2016 ◽  
Vol 67 (8) ◽  
pp. 897 ◽  
Author(s):  
M. Z. Z. Jahufer ◽  
J. L. Ford ◽  
D. R. W. Woodfield ◽  
B. A. Barrett

Optimal evaluation and use of introduced germplasm for species improvement is an ongoing challenge. Research was conducted to survey a select set of introduced white clover (Trifolium repens L.) germplasm from broad geographic origins to assess their genetic potential, based on F1 crosses to elite New Zealand cultivars. The bulk progeny generated from test crosses to Grasslands cultivars Demand, Sustain and Kopu II were evaluated at Palmerston North under rotational grazing by sheep. The replicated trial consisted of the 26 germplasm accessions, three cultivars used as maternal parents, and 78 F1 bulk progeny breeding lines. Three morphological traits and estimated seasonal dry matter yield were measured over four years. Significant (P < 0.05) genotypic variation was observed for all these traits among the parents and F1 progeny lines. F1 progeny lines with traits values greater than the cultivars were identified. Significant (P < 0.05) genotype-by-season (σ2gs) and genotype-by-year (σ2gy) interactions were estimated for dry matter yield. Principle component analysis of the F1 progeny-by-trait BLUP matrix identified 16 elite progeny lines with mean seasonal dry matter yield equal to or higher than the cultivars. Half of the lines had Demand as the cultivar parent, while only three had Kopu II as a parent. Fourteen of these progeny lines were derived from crosses to Australasian adapted germplasm. This study indicated that choice of adapted cultivar with which to cross is important, and introduced germplasm from Australasia is a valuable source of adaptive variation in these F1 progeny. More complex approaches may be needed to identify and use adaptive allelic variation from germplasm sources beyond Australasia.


1993 ◽  
Vol 33 (3) ◽  
pp. 333 ◽  
Author(s):  
CK Lee ◽  
HA Eagles ◽  
NM McFarlane ◽  
KB Kelly

A collection of regional white clover (Trifolium repens L.) populations in north-central Victoria was made from 42 farms sown to cv. Irrigation 20-55 years ago. The collection was evaluated for characters known to be associated with productivity and persistence, with the objectives of assessing the extent of genotypic variation within the collection and determining its suitability for a long-term population improvement program for Victoria. Some regional populations of cv. Irrigation have reduced leaf and stolon sizes compared with recently sown and commercial seed farm populations. In a broadbased population derived from this collection, genetic variances and broad sense heritability estimates were high for leaf length and width, and for stolon length, characters related to productivity and persistence. These populations of cv. Irrigation may form the basis of a population improvement program to develop more productive, persistent cultivars for Victoria.


Plant Science ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Elizabeth S. Jones ◽  
Leonie J. Hughes ◽  
Michelle C. Drayton ◽  
Michael T. Abberton ◽  
Terry P.T. Michaelson-Yeates ◽  
...  

2007 ◽  
Vol 277 (4) ◽  
pp. 413-425 ◽  
Author(s):  
N. O. I. Cogan ◽  
M. C. Drayton ◽  
R. C. Ponting ◽  
A. C. Vecchies ◽  
N. R. Bannan ◽  
...  

1988 ◽  
Vol 110 (1) ◽  
pp. 145-154 ◽  
Author(s):  
R. Cook ◽  
D. R. Evans

SummaryThe expression of symptoms of stem nematode reproduction on a total of 53 white clovers (26 cultivars, 14 genepools and 13 introductions from plant collections) was studied in a series of field and glasshouse experiments. Seedlings or stolon-tip cuttings were inoculated with nematodes and the clovers classified by the proportion of plants which developed symptoms. Significant differences were found between varieties although in each test the majority was intermediate between more resistant and susceptible extremes. There was significant positive correlation between tests, in spite of different inoculation methods and different average levels of susceptibility. Very large-leaved cv. Aran was more resistant than most other clovers tested, and small-leaved cv. S. 184 was more susceptible. There was no general correlation of leaf size with reaction to stemnematode. Small-leaved cv. Pronitro was also resistant while several large-leaved cultivars were susceptible. In observations of plants exposed to nematodes over a long period, either by sequential inoculations or through perpetuating latent infections, apparently resistant plants eventually succumbed and supported nematode reproduction. It has not been determined whether this was because selection for virulence in the nematodes had occurred.


2021 ◽  
Vol 72 (11) ◽  
pp. 926
Author(s):  
M. Z. Z. Jahufer ◽  
J. L. Ford ◽  
G. R. Cousins ◽  
D. R. Woodfield

Assessment of the relative performance of white clover (Trifolium repens L.) cultivars, using multi-year and multi-location seasonal growth trials, is key to identification of material with specific and broad adaptation. This paper is based on a multi-year and multi-location study of 56 white clover entries comprising 14 commercial cultivars and 42 experimental synthetic lines evaluated for seasonal growth under rotational grazing across four locations in New Zealand over 4years. The four locations (and animals grazing) were: Kerikeri (beef cattle), Aorangi (beef cattle), Ruakura (dairy cattle), Lincoln (sheep). Significant (P&lt;0.05) genotypic variation among the 56 entries, and genotype × year, genotype× location and genotype× season interactions, were estimated. We were able to identify cultivars and experimental synthetics with specific and broad adaptation to the three grazing management types. Cvv. AberDance, Apex, Demand, Prestige, Quartz and Riesling, with leaf size ranging from small to medium–large, showed highly above-average performance under sheep grazing. Synthetic lines 15 and 45 also had highly above-average performance under sheep grazing. Cvv. Legacy and Kopu II showed above-average performance under cattle and dairy grazing. Synthetics 15, 48, 49, 44, 22 and 18 and cv. Quartz had above-average performance under all three grazing managements. Synthetics 27, 33 and 38 had highly above-average performance across all three grazing managements and were superior to all 14 cultivars evaluated. Several of these superior synthetics are being tested across multiple grazing environments. Among the 14 cultivars evaluated, Legacy and Quartz showed superior seasonal growth performance across the three grazing managements. Quartz is being evaluated in several on-farm trials across temperate regions of the world.


Genomics ◽  
2018 ◽  
Vol 110 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Heshan Zhang ◽  
Hong Tian ◽  
Mingxin Chen ◽  
Junbo Xiong ◽  
Hua Cai ◽  
...  

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 190
Author(s):  
Lei Chu ◽  
Yiping Gao ◽  
Lingling Chen ◽  
Patrick E. McCullough ◽  
David Jespersen ◽  
...  

White clover (Trifolium repens L.) is cultivated as a forage crop and planted in various landscapes for soil conservation. There are numerous reports of failed white clover stands each year. A good understanding of the seed germination biology of white clover in relation to environmental factors is essential to achieve successful stand establishment. A series of experiments were conducted to investigate the impacts of light, temperature, planting depth, drought, and salt stress on seed germination and the emergence of white clover. White clover is negatively photoblastic, and seed germination averaged 63 and 66% under light and complete dark conditions 4 weeks after planting (WAP), respectively. Temperature affected the seed germination speed and rate. At 1 WAP, seeds incubated at 15 to 25 °C demonstrated a significantly higher germination rate than the low temperatures at 5 and 10 °C; however, the germination rate did not differ among the temperature treatments at 4 WAP. The results suggest that white clover germination decreases with increasing sowing depths, and the seeds should be sown on the soil surface or shallowly buried at a depth ≤1 cm to achieve an optimal emergence. White clover seeds exhibited high sensitivity to drought and salinity stress. The osmotic potential and NaCl concentration required to inhibit 50% seed germination were −0.19 MPa and 62.4 mM, respectively. Overall, these findings provide quantifiable explanations for inconsistent establishment observed in field conditions. The results obtained in this research can be used to develop effective planting strategies and support the successful establishment of white clover stands.


Sign in / Sign up

Export Citation Format

Share Document