Assessment of the nitrogen status of onions (Allium cepa L.) cv. Cream Gold by plant analysis

1990 ◽  
Vol 30 (6) ◽  
pp. 853 ◽  
Author(s):  
NA Maier ◽  
AP Dahlenburg ◽  
TK Twigden

Three field experiments were carried out during 1987-88 (1 site) and 1988-89 (2 sites) with Cream Gold onions grown on siliceous sands, to investigate the effect of nitrogen (N), at rates up to 475 kg N/ha on total-N, nitrate-N, potassium (K) and phosphorus (P) concentrations in youngest fully expanded blades (YFEB), bulked blades, necks and developing bulbs. The plant samples were collected when the largest bulbs were 25-30 mm in diameter. Nitrate-N concentrations were in the order WEB> bulked blades>necks = developing bulbs. For total-N the order was YFEB = bulked blades>necks> developing bulbs. Nitrate-N was more sensitive to variations in N supply than total-N in all tissues sampled. Potassium concentrations were in the order bulked blades > YFEB > necks > bulbs. At N rates <75 kg N/ha, P concentrations were in the order YFEB = bulked blades > bulbs > necks. Coefficients of determination (r2) for the relationships between nitrate-N and total-N concentrations and relative marketable yield of bulbs were in the range 0.73-0.98. At sites 1 and 3, the relationships between total-N and relative marketable yield were 'C-shaped' or showed the Piper-Steenbjerg effect. Critical concentrations (values at 90% relative marketable yield) for nitrate-N varied between plant parts (375-590 mg/kg) and sites (590-940 mg/kg for YFEB). Critical total-N concentrations also varied between the different plant parts (1.2-2.9%) but less so between sites (2.4-2.9% for YFEB) compared with nitrate-N. Based on sensitivity (as indicated by the range in tissue concentrations in response to variations in N supply) and on the correlations between nitrate-N and total-N concentrations and per cent relative marketable yield, we concluded that nitrate-N and total-N concentrations in YFEB were suitable indicators of the N status of onion plants. The YFEB is easily identified, and compared with bulked blades, necks or bulbs, samples of 50-100 can be collected without destroying plants and will also not result in excessive plant material to dry. Based on the variation in critical values between sites (reproducibility), total-N is preferred to nitrate-N. Correlations between nitrate-N and total-N concentrations in YFEB and bulb quality attributes (scale thickness, glucose concentration, fructose concentration, soluble solids and dry matter) were poor (72 values 10.48) and of little predictive value.

1990 ◽  
Vol 30 (6) ◽  
pp. 845 ◽  
Author(s):  
NA Maier ◽  
AP Dahlenburg ◽  
TK Twigden

The effect of nitrogen (N), at rates up to 590 kg N/ha, on the yield and quality of Cream Gold onions grown on siliceous sands was investigated in field experiments conducted during 1987-88 (1 site) and 1988-89 (2 sites). As the rate of applied N increased there was a significant (P<0.001) increase in the fresh weight of tops harvested when the largest bulbs were 25-30 mm in diameter. Fresh weight of tops was significantly (P<0.001) correlated with final marketable yield of bulbs. Nitrogen application accelerated top senescence. Nitrogen-deficient plants had erect green tops at harvest. Marketable yield was significantly (P<0.01) increased and the yield of culls (unmarketable bulbs) was significantly (P<0.01) decreased as the rate of N increased at all sites. Nitrogen rates in the range 299-358 kg N/ha were required for 95% of maximum yield. Scale thickness increased significantly (P<0.05) and glucose and fructose concentrations decreased significantly (P<0.05) at 2 sites as the rate of applied N increased. Soluble solids and dry matter of bulbs were not affected by N. Bulb size increased as the rate of applied N increased, however, the magnitude of the effect varied between sites. Number of days to 10% sprouting during storage at 15 � 0.5�C was significantly increased as the rate of applied N increased up to 40 kg N/ha at 2 sites. We have concluded that for the cv. Cream Gold grown on siliceous sands, the high rates of fertiliser N required to maximise marketable yield and bulb size were not detrimental to quality.


2021 ◽  
Vol 845 (1) ◽  
pp. 012015
Author(s):  
E V Aminova ◽  
R R Salimova ◽  
O E Merezhko

Abstract Nowadays the study of the interrelation of the genotype of strawberry plants in garden and climatic conditions is extremely relevant. Due to the various systems of genetic control and the modifying effects of growing conditions on the manifestation of quantitative traits, there is the need to assess the genotypic variability of economically valuable features, focused on the identification of genotypes characterized by stability and adaptive qualities in growing conditions. The study examined 15 varieties of garden strawberries of domestic and foreign selection. The field experiments and surveys were carried out according to the Program generally accepted in the Russian Federation and methodology for the variety study of fruit, berry and nut crops. We studied such features as the number of peduncles (pcs/bush), number of berries (pcs/bush), average weight of berries (g), total and marketable yield (g/bush), sugar content in berries, soluble solids and ascorbic acid. The purpose of this work was to assess the genotype-year interrelation in terms of the variability of productivity features and berry quality and to identify strawberry varieties with a stable genotype. As a result of two-way analysis of variance for the variety-year interrelation, the obtained values were 1.10-8.50 at standard Fst. - 1.24. Statistically important differences had indicators of productivity of a bush between the first and second clusters (t = 5.89 at p <0.01), the first and third (t = 15.83 at p <0.01), the second and third clusters (t = 8.13 at p <0.01), as well as the average berry weight between the first and third, second and third clusters (t = 15.50 and 6.99 at p <0.01, respectively). Significant differences in the value of the Euclidean distance were revealed for varieties Mishutka (54.5), Daryonka (54.5), Pervoklassnitsa (58) realizing their productivity potential in different years of cultivation.


2016 ◽  
Vol 155 (2) ◽  
pp. 261-281 ◽  
Author(s):  
S. E. ROQUES ◽  
D. R. KINDRED ◽  
S. CLARKE

SUMMARYTriticale has a reputation for performing well on poor soils, under drought and with reduced inputs, but there has been little investigation of its performance on the better yielding soils dominated by wheat production. The present paper reports 16 field experiments comparing wheat and triticale yield responses to nitrogen (N) fertilizer on high-yielding soils in the UK in harvest years 2009–2014. Each experiment included at least two wheat and at least two triticale varieties, grown at five or six N fertilizer rates from 0 to at least 260 kg N/ha. Linear plus exponential curves were fitted to describe the yield response to N and to calculate economically optimal N rates. Normal type curves with depletion were used to describe protein responses to N. Whole crop samples from selected treatments were taken prior to harvest to measure crop biomass, harvest index, crop N content and yield components. At commercial N rates, mean triticale yield was higher than the mean wheat yield at 13 out of 16 sites; the mean yield advantage of triticale was 0·53 t/ha in the first cereal position and 1·26 t/ha in the second cereal position. Optimal N requirement varied with variety at ten of the 16 sites, but there was no consistent difference between the optimal N rates of wheat and triticale. Triticale grain had lower protein content and lower specific weight than wheat grain. Triticale typically showed higher biomass and straw yields, lower harvest index and higher total N uptake than wheat. Consequently, triticale had higher N uptake efficiency and higher N use efficiency. Based on this study, current N fertilizer recommendations for triticale in the UK are too low, as are national statistics and expectations of triticale yields. The implications of these findings for arable cropping and cereals markets in the UK and Northern Europe are discussed, and the changes which would need to occur to allow triticale to fulfil a role in achieving sustainable intensification are explored.


1977 ◽  
Vol 57 (3) ◽  
pp. 763-770
Author(s):  
H. T. KUNELIUS ◽  
MICHIO SUZUKI

Frode orchard grass (Dactylis glomerata L.) was fertilized with 99–495 kg N/ha/yr in three equal applications and harvested three or four times per season over a 3-yr period to determine the productivity, quality of forage and persistence of stands. The application of N resulted in significant (P =.001) linear and quadratic increases in dry matter (DM) yields. Higher DM yields were obtained with the 3-harvest system while the yield distribution within the season was more uniform for the 4-harvest system. Total N concentrations of orchard grass increased linearly with the N rates. Total N yields were dependent on the rates of applied N with the recovery of applied N ranging from 39 to 70% at 99–297 kg N/ha/yr, respectively. The in vitro disappearance of DM was slightly reduced by the high N rates in the 1st and 2nd harvests. The nitrate-N concentrations were highest in the early and late summer ranging from.11 to.29% at 297–495 kg N/ha/yr, respectively. The persistence of orchard grass was better under the 4- than the 3- harvest system.


Author(s):  
Hamid Salari ◽  
B.S. Hansra ◽  
Yashpal Singh Saharwat

Onion (Allium cepa L.) is among the most cultivated vegetable crops in the world. Afghanistan is thought to be the origin as several local and wild varieties are found in different parts of the country. Safid e Paisaye is a local variety grown in central parts of Afghanistan in the Ghorband valley. This variety has long storability and high market demand among restaurants in the region, but little research has been done to increase the quality and its availability to the market to increase its market share in Afghanistan. Conducted under supervision of Amity University Uttar Pradesh, Noida, India, at Agriculture Faculty Research Farm of Kabul University, this investigation looks at plough depth, land preparation methods, and planting date on quality and yield of onion bulb; it also studied other cultural practices including irrigation and fertilization dose and frequency. The parameters studied in this investigation include neck diameter (cm), bulb diameter (cm), neck to bulb ratio, bulb weight (gr), bulb volume (cm3), bulb density (gr/cm3), Total Soluble Solids (TSS) (Brix), firmness (Kg/cm2), marketable yield (MT/Ha), and total yield (MT/Ha). The data revealed that planting date has significant influence on bulb quality and yield of onion. The highest bulb diameter (6.95 cm), bulb weight (121 gr), bulb volume (128 cm3), marketable yield (32.54 MT/Ha), and total yield (34.24 MT/Ha) and the lowest neck to bulb ratio (0.04) were recorded for the first planting date (seed sown in nursery on 10 March - seedlings planted in field on 10 May). Land ...


2020 ◽  
Vol 30 (6) ◽  
pp. 685-691
Author(s):  
Andre Luiz Biscaia Ribeiro da Silva ◽  
Joara Secchi Candian ◽  
Lincoln Zotarelli ◽  
Timothy Coolong ◽  
Christian Christensen

Soil nitrogen (N) is easily leached in cabbage (Brassica oleracea var. capitata) production areas of southeastern United States characterized by sandy soils with low water-holding capacity. Soil N leaching in these areas is increased after rainfall events; consequently, growers increase the fertilizer N application to protect against N deficiencies and yield loss. The objective of this study was to evaluate the effects of three fertilizer N rates on yield and head quality for common cabbage cultivars used by Florida and Georgia growers during four cabbage growing seasons. Field experiments were conducted in Hastings, FL, in 2016 and 2017, and in Tifton, GA, in 2018 and 2019. A randomized complete block design was used with a split-plot design of fertilizer N rate and cabbage cultivar. Fertilizer N rate treatments consisted of the application of 170, 225, and 280 lb/acre N and were assigned as the main plot. Cabbage cultivars Bravo, Bronco, Bruno, Capture, Cheers, and Ramada were assigned as the sub-plots. Weather conditions were monitored during all growing seasons, and total, marketable, and unmarketable yields, as well as cabbage head polar and equatorial diameters, and core height and width were measured. In Florida, there was a significant interaction for growing season and fertilizer N rate. The Florida 2016 cabbage season experienced 10.5 inches of rainfall, and fertilizer N rates had no effect on cabbage yields. Total and marketable yield averaged 45,391 and 38,618 lb/acre among fertilizer N rates in 2016, respectively. Rainfall accumulated 2.1 inches during the 2017 study in Florida, which was less than the crop evapotranspiration. In response, total and marketable yield were higher for the applications of 225 lb/acre N (51,865 and 49,335 lb/acre, respectively) and 280 lb/acre N (54,564 and 52,219 lb/acre, respectively) compared with the application of 170 lb/acre N (47,929 and 43,710 lb/acre, respectively). In Georgia, there were no significant interactions between production season and fertilizer N rates. In addition, there were no significant main effects of season or fertilizer N rate. Rainfall events accumulated 20.9 and 7.8 inches during the 2018 and 2019 growing seasons, respectively. Total and marketable yields averaged 37,290 and 33,355 lb/acre, respectively for the two growing seasons in Georgia. Cabbage cultivar had no interaction with fertilizer N rate in any location. ‘Cheers’ (52,706 lb/acre) had the highest total yield in Florida, and ‘Ramada’ (38,462 lb/acre) and ‘Bronco’ (39,379 lb/acre) had the highest total yields in Georgia. In conclusion, the application of 225 lb/acre N was sufficient to sustain cabbage yields, but yields of the 170- and 225-lb/acre N treatments were not different when rainfall events exceeded crop evapotranspiration.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1255-1259 ◽  
Author(s):  
Carmen Feller ◽  
Matthias Fink

The objective was to provide results to optimize the production of table beet (Beta vulgaris L.) with respect to yield and quality. Field experiments were carried out over 2 years, where the effects of nitrogen (N) supply, sowing date, and cultivar were tested in a block design with four replications. In addition to yield, soluble solids and nitrate N contents of roots were measured to assess quality. Sowing date was an important factor for determining yield and quality of table beet. Sowing dates later than June at the experimental site are not recommended because they resulted in an increase in nitrate N content in fresh weight of up to 3027 mg·kg-1 and an average yield loss of 46% compared to sowings in April. Soluble solids content (SSC) was only slightly affected by planting date. Nitrogen supply did not affect SSC, but increasing N supply led to a major increase in nitrate N content, especially if combined with late sowing dates. It was concluded for early sowing dates that N supply be determined to achieve the maximum yield. With an early sowing date, nitrate N content in fresh weight at harvest was <563 mg·kg-1, even with a high N supply of 250 kg·ha-1. Late sowing dates required a reduced N supply to keep harvest nitrate contents below the 2500 mg·kg-1 required by the processing industry. Recommendations for optimizing N supply, sowing date, and cultivars for table beet should always take into account strong interactions between these factors.


2013 ◽  
Vol 50 (1-2) ◽  
pp. 221-229
Author(s):  
Jan Rumpel ◽  
Kazimierz Felczyński

Two field experiments were conducted to study the effect of plant density on yield, size grading and maturity of onion bulbs grown from seeds. In the first experiment carried out during 1991-1993, three onion cultivars (Hysam F<sub>1</sub> , Mercato F<sub>1</sub> and Sochaczewska) were sown for intended densities of 20, 40, 60, 80,100 and 140 plants m<sup>-2</sup>, whereas in the second one, in 1996, six onion cultivars (Spirit F<sub>1</sub>, Summit F<sub>1</sub>, Hyduro F<sub>1</sub>, Armstrong F<sub>1</sub>, Renate F<sub>1</sub> and Robusta) were sown for intended densities of 40, 60 and 80 plants m<sup>-2</sup>. The onions were grown on beds, 1,35 m wide, in 4 rows per bed (27+27+27+54 cm). Marketable yield increased with plant density, and depending on year was highest at 80 or 100 plants m<sup>-2</sup>. The average marketable yield of the 1991-1993 experiment increased from 20.5 t·ha<sup>-1</sup> at 20 plants m<sup>-2</sup> to 32.8 t·ha<sup>-1</sup> at 80 plants m<sup>-2</sup>, whereas that of the 1996 experiment increased from 48,9 t-ha<sup>-1</sup> at 40 plants m-2 to 59.0 t·ha<sup>-1</sup> at 80 plants m<sup>-2</sup>, respectively. Yield of large bulbs decreased with density and was highest at 20-40 plants m<sup>-2</sup>, oposite to the yield of small bulbs, which was highest at the highest density of 140 plants·m<sup>-2</sup>. The medium bulb yield increased with density, at the some way as compared the total marketable yield. No greater effect of cultivar on bulb size grades was found and the existing differences were proportional to the total marketable yield . Plant density hastened maturity of onions, and at density of 140 plants m<sup>-2</sup> the leaf fall-over occurred 9-10 days earlier as compared at density of 20 plants m<sup>-2</sup>. The cultiwars used. can be placed in the following order of decreasing productivity: 1 . Mercato F<sub>1</sub>, 2. Hysam F<sub>1</sub> and 3. Sochaczewska, - in the first expeiiment (1991-93) and 1. Annstrong F<sub>1</sub>, 2. Spirit F<sub>1</sub>, 3. Robusta, 4. Renate F<sub>1</sub>, 5. Hyduro F<sub>1</sub> and 6. Summit F<sub>1</sub> - in the second experiment (1996), respectively.


1991 ◽  
Vol 31 (6) ◽  
pp. 835 ◽  
Author(s):  
DO Huett ◽  
E White

A gamma x quadratic response surface model was used to predict the growth rate over the 14-week growth period of zucchini squash (Cucurbita pepo L.) cv. Blackjack in sand culture with nitrogen (N) levels of 2, 7, 14, 29 and 43 mmol/L. Growth rate relative to maximum was plotted against tissue N concentration every 2 weeks, to derive diagnostic petiole sap; leaf nitrate-N and leaf total-N in youngest fully opened leaf, youngest fully expanded leaf and oldest green leaf; and total N in bulked leaf samples. Critical concentrations corresponding to 90% maximum growth rate for deficiency and toxicity are presented. Petiole sap and leaf nitrate-N were much more responsive than leaf total N concentrations over the 2-14 mmol N/L range where positive growth responses were recorded. At 2 mmol N/L, plants were severely N-deficient and growth rate was low (1.6 g/plant.week at fruit set). Tissue nitrate concentrations were negligible, while leaf total N concentrations exceeded 2.6%. Salt toxicity occurred at 29 and 43 mmol N/L, and at the highest N level, tissue N concentrations were sometimes reduced so that concentration ranges for adequacy and toxicity overlapped. Critical tissue N concentrations always exceeded (P<0.05) levels recorded in plants receiving a marginally deficient N level (7 mmol/L). Critical petiole sap and leaf nitrate-N concentrations were much more variable between sampling periods than leaf total N concentrations. Adequate concentration ranges (values between critical concentrations for deficiency and toxicity) were determined for the pre-fruit harvest (weeks 2-6) and fruit harvest (weeks 8-14) growth stages where values were common for consecutive weeks within each sampling period. It was only possible to determine adequate concentrations over the entire growth period for bulked leaf total N (4.30440% prefruit harvest and 4.15-4.45% fruit harvest). Concentrations of potassium (K), phosphorus and sulfur were affected (P<0.05) by N application level, with the largest effect being recorded for K. This confirms the importance of optimising N supply when determining critical levels of these nutrients for zucchini squash. Determination of petiole sap nitrate-N concentrations in the field can be used to distinguish between a deficient and an adequate N supply, but the large variation in values between sampling periods renders this technique less reliable than leaf total N. Tissue N concentrations which exceed critical deficient levels can be interpreted as such because they were recorded when growth was depressed at high N levels. This will rarely occur under field conditions.


1977 ◽  
Vol 57 (2) ◽  
pp. 427-431
Author(s):  
H. T. KUNELIUS ◽  
MICHIO SUZUKI

Frode orchard grass (Dactylis glomerata L.) was seeded at 20 kg/ha without a companion crop in 1971 and 1972. Nitrogen was applied at 37–185 kg/ha at seeding and after the first harvest, and the stands were subjected to three harvest systems. Total dry matter (DM) yields increased up to 74 kg N/ha/application. Systems with the latest first harvest and longest regrowth intervals produced highest DM yields. Early seeding was important for the production of high DM yields. Late fall harvest in October resulted in poor winter survival. The total N concentrations of orchard grass ranged from 2.58 to 4.40%, with small or no increases beyond 111 kg N/ha/application. In vitro disappearance of DM was not affected by N rates but varied from 60.7 to 69.8% with the highest readings for the early or short regrowth interval harvests. Nitrate-N concentrations of orchard grass were < 0.15% at 37 kg N/ha/application. At or above 74 kg N/ha/application, nitrate-N usually exceeded 0.15% level which might be potentially toxic to livestock consuming the forage.


Sign in / Sign up

Export Citation Format

Share Document