Effect of nitrogen, phosphorus, and potassium on yield and petiolar nutrient concentration of potato (Solanum tuberosum L.) cvv. Kennebec and Atlantic

1994 ◽  
Vol 34 (6) ◽  
pp. 825 ◽  
Author(s):  
NA Maier ◽  
AP Dahlenburg ◽  
CMJ Williams

Data are presented from 3 field experiments that studied the effects of nitrogen (N) up to 360 kg N/ha, phosphorus (P) up to 100 kg P/ha, and potassium (K) up to 480 kg K/ha on tuber yield and the concentration of N, P, and K in petioles of youngest fully expanded leaves (P-YFEL) of potato cvv. Kennebec and Atlantic sampled when the length of the longest tubers was 10-15 mm. Data on the significance of relationships between total N and P, total N and nitrate-N, and chloride and nitrate-N in P-YFEL are also presented. At 1 site, Atlantic yielded 18% higher than Kennebec; at another, it yielded 21% less. Significant K x cv. and N x cv. interactions occurred at some sites. Increasing rates of applied N significantly increased total N concentrations in P-YFEL at all sites and nitrate-N concentrations at sites that were N-deficient. At 1 site, increasing the rate of applied P from nil to 100 kg P/ha significantly increased total N concentration from 2.8 to 3.4%. Total N concentrations in P-YFEL of Atlantic were significantly lower than Kennebec. For total N, there were significant N x K and P x cv. interactions. There was no significant interaction between N, P, and K in their effects on nitrate-N concentration in P-YFEL. At all sites, the application of N and P significantly increased P concentrations in P-YFEL, and mean concentrations were significantly greater in Kennebec than Atlantic. At sites deficient in K, the application of K significantly decreased P concentration. Significant N x cv. and P x cv. interactions occurred at 2 sites. At both K-deficient and non-responsive sites, increasing rates of applied K significantly increased K concentrations in P-YFEL. Differences between cultivars in K concentration were not significant at 2 sites, and although significant at the third, the difference (0.2%) was of little practical importance. At 2 sites, significant N x K and K x P interactions were found. Significant positive linear relationships were found between total N and P concentrations in P-YFEL for both the experimental sites (r = 0.46-0.84) and commercial crops (r = 0.43-0.61). Except at site 1 (r = 0.85), total N and nitrate-N concentrations were not highly correlated. For 1 experimental site and for all the growing regions, there were significant negative linear relationships between nitrate-N and chloride concentrations in P-YFEL (r = -0.38 to -0.83). We suggest that the synergism between total N and P and the negative correlation between nitrate N and chloride are important factors to be considered to ensure reliable interpretation of early-season, petiole plant test data for these nutrients in potato crops; that the critical P and total N concentrations are different for Kennebec and Atlantic; and that when K is not yield-limiting, the main effects and interactions between K and total N, P, or nitrate-N do not confound the use of these nutrients in P-YFEL to assess the P, N, or K status of potato crops.

1991 ◽  
Vol 31 (3) ◽  
pp. 393
Author(s):  
NA Maier ◽  
AB Frensham ◽  
KSR Chapman ◽  
CMJ Williams

Total tuber yields were compared for inner and outer (guard) rows from 4 phosphorus (P) and 3 nitrogen (N) field experiments conducted during 1985-86 in South Australia, and from 5 N and 2 potassium (K) field experiments conducted during 1985-86 and 1987-88 in Tasmania. All fertiliser treatments were banded along the rows, either at planting or part at planting and the remainder sidedressed after emergence. The inter-row spacings were in the range 76-86 cm and the cultivars used were Kennebec, Coliban and Russet Burbank. Analysis showed that at only 1 of the 14 sites (site 6 in South Australia) was the mean total tuber yield for the inner 2 rows significantly (P<0.01) less than the mean total tuber yield for all 4 rows. However, the difference was small (0.8 t/ha or 1.9%) and of little practical importance. The relationships between mean (� s.e.) total tuber yield and rate (kg/ha) of applied nutrient (0-240 P, 0-320 N, 0-400 K) for inner and guard rows showed that differences between means were small and usually within standard error ranges at all sites. There were no consistent differences in the magnitudes of the standard errors of the means for inner and guard rows for all rates and types of nutrient applied. No significant cross-feeding occurred in these fertiliser experiments, which suggests that omission of guard rows from experiments where the fertiliser treatments are applied along the rows should not result in serious errors of interpretation of tuber yield response.


2009 ◽  
Vol 39 (8) ◽  
pp. 1484-1497 ◽  
Author(s):  
Robert A. Slesak ◽  
Stephen H. Schoenholtz ◽  
Timothy B. Harrington ◽  
Brian D. Strahm

We examined the effect of logging-debris retention and competing-vegetation control (CVC, initial or annual applications) on dissolved organic carbon (DOC), dissolved organic nitrogen, and nitrate-N leaching to determine the relative potential of these practices to contribute to soil C and N loss at two contrasting sites. Annual CVC resulted in higher soil water nitrate-N concentration and flux, with the magnitude and duration of the effect greatest at the high-N site. Most of the increase in nitrate-N at the low-N site occurred in treatments where logging debris was retained. Dissolved organic nitrogen increased at the high-N site in March of each year following annual CVC, but the contribution of this increase to total N concentration was small (2%–4% of total N flux). There was no effect of logging-debris retention or CVC treatment on soil water DOC concentrations, indicating that DOC inputs from logging debris and competing vegetation were either retained or consumed in the mineral soil. The estimated increase in leaching flux of dissolved C and N associated with the treatments was low relative to total soil pools, making it unlikely that loss of these elements via leaching will negatively affect future soil productivity at these sites.


1988 ◽  
Vol 28 (3) ◽  
pp. 401 ◽  
Author(s):  
DO Huett ◽  
G Rose

The tomato cv. Flora-Dade was grown in sand culture with 4 nitrogen (N) levels of 1.07-32.14 mmol L-1 applied as nitrate each day in a complete nutrient solution. The youngest fully opened leaf (YFOL) and remaining (bulked) leaves were harvested at regular intervals over the 16-week growth period. Standard laboratory leaf total and nitrate N determinations were conducted in addition to rapid nitrate determinations on YFOL petiole sap. The relationships between plant growth and leaf N concentration, which were significantly affected by N application level, were used to derive diagnostic leaf N concentrations. Critical and adequate concentrations in petiole sap of nitrate-N, leaf nitrate-N and total N for the YFOL and bulked leaf N were determined from the relationship between growth rate relative to maximum at each sampling time and leaf N concentration. YFOL petiole sap nitrate-N concentration, which can be measured rapidly in the field by using commercial test strips, gave the most sensitive guide to plant N status. Critical values of 770-1 120 mg L-I were determined over the 10-week period after transplanting (first mature fruit). YFOL (leaf + petiole) total N concentration was the most consistent indicator of plant N status where critical values of4.45-4.90% were recorded over the 4- 12 week period after transplanting (early harvests at 12 weeks). This test was less sensitive but more precise than the petiole sap nitrate test. The concentrations of N, potassium, phosphorus, calcium and magnesium in YFOL and bulked leaf corresponding to the N treatments producing maximum growth rates are presented, because nutrient supply was close to optimum and the leaf nutrient concentrations can be considered as adequate levels.


1995 ◽  
Vol 43 (4) ◽  
pp. 419-433
Author(s):  
H. Biemond ◽  
J. Vos ◽  
P.C. Struik

Three greenhouse trials and one field trial were carried out on Brussels sprout cv. Icarus SG2004 in which the treatments consisted of different N amounts and application dates. DM and N accumulation in stems, apical buds and groups of leaf blades, petioles and sprouts were measured frequently throughout crop growth. Total amounts of accumulated DM and N were affected by amount of N applied and date of application, but the final harvest indexes for DM and N (0.10-0.35 and 0.20-0.55, respectively) were not significantly affected by treatments in most experiments. Nitrate N concentrations were only high (up to about 2%) shortly after planting. The total N concentration of leaf blades and petioles increased with increasing leaf number. This increase resulted from a decreasing N concentration during the leaf's life. The total N concentration in sprouts changed little with leaf number.


1976 ◽  
Vol 68 (4) ◽  
pp. 556-560 ◽  
Author(s):  
G. L. Terman ◽  
J. C. Noggle ◽  
C. M. Hunt

2020 ◽  
Vol 77 (2) ◽  
pp. 264-275
Author(s):  
Jessica A. Lueders-Dumont ◽  
Daniel M. Sigman ◽  
Beverly J. Johnson ◽  
Olaf P. Jensen ◽  
Sergey Oleynik ◽  
...  

The15N/14N ratio of the fish-native organic matter preserved in fish otoliths (or δ15Noto) may allow for reconstruction of fish trophic history and changes in food webs. To support this application, ground-truthing data are needed on the relationships among the δ15N of diet, of fish tissue (e.g., white muscle tissue, δ15Nwmt), and δ15Noto. Using a highly sensitive method for N isotope analysis, δ15Notowas compared with δ15Nwmtin 24 teleost species. Within a species, the difference between δ15Notoand δ15Nwmt(Δδ15No-w) varied little across individuals, confirming the utility of δ15Nototo reconstruct δ15Nwmtchanges for a given species. Across species, δ15Notoand δ15Nwmtwere highly correlated. However, Δδ15No-wvaried systematically across species. Phylogeny, the concentrations of total N and amino acids, and life history were ruled out as the main cause for the observed variation in Δδ15No-w. δ15Notowas lowest relative to δ15Nwmtin species producing larger otoliths. We propose that δ15Notois elevated by isotopically fractionating metabolism of the organic matrix, which is less important when otolith growth is fast and thus when the otolith is large.


1935 ◽  
Vol 118 (809) ◽  
pp. 343-370 ◽  

Agricultural meteorology makes slow progress because it is rarely possible to study the correlation of weather and yield for crops grown in normal agricultural rotations over long periods. Both in commercial agriculture and at experiment stations, rotations and cultural methods change sufficiently frequently to destroy the homogeneity of the data, even when records are kept for specific fields or farms. In some of the newer agricultural areas, and especially in those under irrigation, the cropping is simpler, and the need for records and field experiments is more keenly appreciated. Research programmes and practical measures must be determined from experience over only a few decades; but erroneous conclusions may easily be drawn from trends over such short periods, memories of individual years, or simple correlations of yields and single weather variates. In the present paper, modern statistical methods of analysing small samples of data are used to examine the relationships between rainfall and cotton yields under irrigation in the Sudan Gezira for periods up to 23 years. The mean yields from this large and semi-desert area fluctuate violently from year to year in such a way as to suggest the dominance of some climatic factor. It will be shown that the cotton yields are highly correlated with rainfall, and further, that seasonal fluctuations in rainfall, including certain cyclic changes, are sufficient to account for most of the decline in yield on some of the oldest areas. This conclusion has considerable practical importance, because a recent sequence of low yields led some critics (Balls, 1935, Vageler and Alten, 1932) of the scheme to conclude that irrigation without drainage had already produced serious soil deterioration. The significance of some of the rainfall effects established may direct attention to new methods of studying problems of soil fertility and the control of pests.


1986 ◽  
Vol 106 (3) ◽  
pp. 467-475 ◽  
Author(s):  
D. Wilman ◽  
P. T. Wright

SummaryThe effect of six intervals between harvests and three levels of N application on the concentration of nitrate-N and total N in total herbage, green leaf and ‘stem’ was studied in two varieties of perennial ryegrass during 30-week periods in each of the first two harvest years of a field experiment. The effect of two intervals between harvests on the concentration of nitrate-N in Italian ryegrass total herbage was studied in the same experiment. The effect of two intervals between harvests and three levels of N application on the concentrations of nitrate-N and total N in total herbage was studied in five grasses during a 32-week period in a second field experiment.Increasing the interval between harvests tended to increase the concentration of nitrate-N in herbage; however, this seemed due mainly to the average date of harvest being later in the year with the longer intervals. The concentration of nitrate-N in herbage increased from June to September. Italian and hybrid ryegrass and tall fescue were much higher than perennial ryegrass in nitrate-N concentration at the highest level of applied N (525 kgN/ha per year). Apart from the species and time of year effects, the nitrate-N concentration seemed to be determined mainly by the amount of N applied divided by the number of days between the date of application and the date of sampling. The ‘stem’ of perennial ryegrasa tended to be slightly higher in nitrate-N concentration than green leaf. The proportion of nitrate-N in total N was increased by increasing the interval between harvests and by applying N and was nearly twice as high in ‘stem’ as in green leaf. Both the nitrate-N and the total N concentration of herbage, particularly the latter, seemed to be inversely related to solar radiation receipt.


Soil Research ◽  
1999 ◽  
Vol 37 (3) ◽  
pp. 575 ◽  
Author(s):  
C. A. Russell ◽  
I. R. P. Fillery

The rate of decomposition of 15N-labelled lupin (Lupinus angustifolius) stubble and the use of mineralised 15N by wheat were determined in field experiments on a deep loamy sand previously cropped to lupin. In one experiment, leaf, stem, and pod (pod-valve) components were applied separately to mini-plots that were either left unplanted or subsequently planted to wheat. In the second experiment, leaf and stem components, each of either low or high N concentration, were applied separately to mini-plots which were subsequently planted to wheat. Soil was recovered in layers to a maximum depth of 1 m and subsequently analysed for 15N in NH + 4 , NO-3 , and total N. The net mineralisation of stubble 15N was estimated from the decrease in soil organic 15N (total 15N – inorganic 15N), and the uptake of 15N by wheat was measured periodically. All treatments were characterised by the high retention of lupin stubble 15N in the soil organic matter. Between 9 and 34% of stem and pod 15N, and 19–49% of leaf 15N, was mineralised within a 10-month period. From these data the annual net mineralisation of a typical lupin stubble was estimated at 25–42 kg N/ha, an N benefit similar to that estimated from agronomic trials. Wheat uptake of lupin-stubble 15N ranged from 9 to 27%. Of the stubble components, only the leaf contained sufficient quantities of mineralisable N to be an important source of N for wheat. At wheat maturity in the first experiment, losses of stubble 15N ranged from 13% (leaf) to 7% (stem). In the second experiment, losses of 15N were only observed from the high N treatments (leaf 8%, stem 15·5%). Stubble component chemistry appeared to affect net mineralisation and plant uptake differently. Across both experiments, annual net mineralisation best correlated (R = 0·69) with the N concentration of the stubble components. Wheat N uptake was strongly positively correlated with polysaccharide content (R = 0·89) but negatively correlated with lignin content (R = – 0·79). Although large quantities (58 and 98 kg N/ha) of soil-derived inorganic N were found in the root-zone (–1·0 m) of wheat sown after lupins, and attributed to the decomposition of lupin root systems and surface residues prior to the establishment of each experiment, it is concluded that the short-term decomposition of lupin stubble 15N results in a modest release of inorganic N. Consequently, the primary value of lupin stubble in the N economy of lupin : cereal rotations is to replenish the soil organic N reserve.


1990 ◽  
Vol 30 (6) ◽  
pp. 853 ◽  
Author(s):  
NA Maier ◽  
AP Dahlenburg ◽  
TK Twigden

Three field experiments were carried out during 1987-88 (1 site) and 1988-89 (2 sites) with Cream Gold onions grown on siliceous sands, to investigate the effect of nitrogen (N), at rates up to 475 kg N/ha on total-N, nitrate-N, potassium (K) and phosphorus (P) concentrations in youngest fully expanded blades (YFEB), bulked blades, necks and developing bulbs. The plant samples were collected when the largest bulbs were 25-30 mm in diameter. Nitrate-N concentrations were in the order WEB> bulked blades>necks = developing bulbs. For total-N the order was YFEB = bulked blades>necks> developing bulbs. Nitrate-N was more sensitive to variations in N supply than total-N in all tissues sampled. Potassium concentrations were in the order bulked blades > YFEB > necks > bulbs. At N rates <75 kg N/ha, P concentrations were in the order YFEB = bulked blades > bulbs > necks. Coefficients of determination (r2) for the relationships between nitrate-N and total-N concentrations and relative marketable yield of bulbs were in the range 0.73-0.98. At sites 1 and 3, the relationships between total-N and relative marketable yield were 'C-shaped' or showed the Piper-Steenbjerg effect. Critical concentrations (values at 90% relative marketable yield) for nitrate-N varied between plant parts (375-590 mg/kg) and sites (590-940 mg/kg for YFEB). Critical total-N concentrations also varied between the different plant parts (1.2-2.9%) but less so between sites (2.4-2.9% for YFEB) compared with nitrate-N. Based on sensitivity (as indicated by the range in tissue concentrations in response to variations in N supply) and on the correlations between nitrate-N and total-N concentrations and per cent relative marketable yield, we concluded that nitrate-N and total-N concentrations in YFEB were suitable indicators of the N status of onion plants. The YFEB is easily identified, and compared with bulked blades, necks or bulbs, samples of 50-100 can be collected without destroying plants and will also not result in excessive plant material to dry. Based on the variation in critical values between sites (reproducibility), total-N is preferred to nitrate-N. Correlations between nitrate-N and total-N concentrations in YFEB and bulb quality attributes (scale thickness, glucose concentration, fructose concentration, soluble solids and dry matter) were poor (72 values 10.48) and of little predictive value.


Sign in / Sign up

Export Citation Format

Share Document