Being realistic about no-tillage, legume ley farming for the Australian semi-arid tropics

1996 ◽  
Vol 36 (8) ◽  
pp. 1069 ◽  
Author(s):  
RL McCown

There is a long tradition of expectation that, in time, land use in the better-endowed areas of Australia's semi-arid tropics would intensify from beef production on grassy woodlands to broadacre production of dryland crops. However, successive development attempts have yet to result in a substantial field crop industry. This paper reflects on a recent 20-year research and development episode in which ley farming, so successful in the wheat-sheep zone of southern Australia, was adapted and trialed in the tropical north. The system tested in the tropics was one which featured (i) coarse grain crops in rotation with legume leys and (ii) cattle grazing native pasture in the crop growing season and ley and crop residues in the dry season. It can be concluded that this system is technically successful. But compared with the ley system in southern Australia, the benefits of pasture legumes are less efficiently captured, both in the animal and the crop production enterprises. In addition, in this climate and on these soils, pastures with the high legume composition needed to substantially substitute for nitrogen fertiliser in the crop phase pose a serious threat of soil acidification. In contrast to legume leys, the advantage of no-tillage, mulch farming practices over conventional cultivation is much greater in this semi-arid tropical region than in temperate or Mediterranean areas: by slowing evaporation, mulch is often crucial in reducing high temperature injury or impedance to emerging seedlings as well as reducing the deleterious effects of intensive summer rainfall. But even with this improvement the climatic risks in dryland grain cropping remain a strong deterrent to crop industry development. Today, the findings from past experimentation, accrued farming experience, and new information products combine to provide what seem to be more realistic expectations for agriculture in this region. Even with the 'best' technology, this region suffers comparative disadvantage with respect to dryland field crop production and marketing. However, the region enjoys comparative advantages in the production of several other types of commodities, and a more realistic approach to 'Research and Development' includes a shift of resources toward activities with production and marketing advantages.

1996 ◽  
Vol 36 (8) ◽  
pp. 995 ◽  
Author(s):  
K Thiagalingam ◽  
NP Dalgliesh ◽  
NS Gould ◽  
RL McCown ◽  
AL Cogle ◽  
...  

The results of 5 short-term (4-8 years) experiments and farm demonstrations in which no-tillage technology was compared with conventional or reduced tillage in the semi-arid tropics of the Northern Territory and Far North Queensland, during the mid 1980s to mid 1990s, are reviewed. In the Douglas-Daly and Katherine districts of the Northern Territory, dryland crops of maize, sorghum, soybean and mungbean sown using no-tillage with adequate vegetative mulch on the soil surface have produced yields comparable with, or higher than (especially in drier years), those obtained under conventional tillage. The importance of a surface mulch in ameliorating soil temperature, moisture and fertility, and in reducing soil movement and loss in crop production in the semi-arid tropics was confirmed. Management of mulch (pasture, crop residues and weeds) will be crucial in the application of no-tillage technology to the development of mixed dryland crop and livestock enterprises in the semi-arid tropics.


Soil Research ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 414 ◽  
Author(s):  
Iñigo Virto ◽  
Maria José Imaz ◽  
Alberto Enrique ◽  
Willem Hoogmoed ◽  
Paloma Bescansa

Stubble burning has traditionally been used in semi-arid land for pest and weed control, and to remove the excess of crop residues before seeding in no-tillage systems. We compared differences in soil properties in a long-term (10 years) tillage trial on a carbonated soil in semi-arid north-east Spain under no-tillage with stubble returned and stubble burnt, with the conventional tillage system (mouldboard plough, stubble returned) as a reference. Differences in total soil organic C and C in particulate organic matter, mineralisation potential, soil physical properties (bulk density, penetration resistance, and aggregate size distribution and stability), and earthworm populations were quantified. The effect of stubble burning was absent or insignificant compared with that of tillage in most of the parameters studied. The most significant effect of stubble burning was the change in soil organic matter quality in the topsoil and penetration resistance. No-till plus stubble burning stocked an amount of organic C in the soil similar to no-till without burning, but the particulate organic matter content and mineralisation potential were smaller. Earthworm activity was similar under the 2 no-till systems, although a trend towards bigger earthworms with increasing penetration resistance was observed under the system with burning. Our results indicate that the role of burnt plant residues and earthworms in organic matter accumulation and soil aggregation in Mediterranean carbonated soils under no tillage is of major importance, meriting further attention and research.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the European Union, various crop diversification systems such as crop rotation, intercropping and multiple cropping, as well as low-input management practices, have been promoted to sustain crop productivity while maintaining environmental quality and ecosystem services. We conducted a data analysis to identify the benefits of crop associations, alternative agricultural practices and strategies in four selected regions of Europe (Atlantic, Boreal, Mediterranean North and Mediterranean South) in terms of crop production (CP). The dataset was derived from 54 references with a total of 750 comparisons and included site characteristics, crop information (diversification system, crop production, tillage and fertilization management) and soil parameters. We analyzed each effect separately, comparing CP under tillage management (e.g., conventional tillage vs. no tillage), crop diversification (e.g., monoculture vs. rotation), and fertilization management (e.g., mineral fertilization vs. organic fertilization). Compared with conventional tillage (CT), CP was higher by 12% in no tillage (NT), in fine- and medium-textured soils (8–9%) and in arid and semiarid sites located in the Mediterranean Region (24%). Compared to monoculture, diversified cropping systems with longer crop rotations increased CP by 12%, and by 12% in soils with coarse and medium textures. In relation to fertilization, CP was increased with the use of slurry (40%), and when crop residues were incorporated (39%) or mulched (74%). Results showed that conversion to alternative diversified systems through the use of crop rotations, with NT and organic fertilization, results in a better crop performance. However, regional differences related to climate and soil-texture-specific responses should be considered to target local measures to improve soil management.


1996 ◽  
Vol 36 (8) ◽  
pp. 1037 ◽  
Author(s):  
PS Carberry ◽  
RL McCown ◽  
RC Muchow ◽  
JP Dimes ◽  
ME Probert ◽  
...  

An innovative ley farming system, involving cereal crops grown in rotation with pasture legumes, has been tentatively adopted by farmers in the semi-arid tropics of northern Australia. Yet, after more than a decade of experimental research, the long-term


1996 ◽  
Vol 36 (8) ◽  
pp. 1025 ◽  
Author(s):  
SJ Yeates ◽  
DG Abrecht ◽  
TP Price ◽  
WS Mollah ◽  
P Hausler

The ley farming systems proposed for the Australian semi-arid tropics involve rotating an annual pasture (usually legume) with crops sown using no-tillage. These systems were developed to overcome many of the climatic constraints that beset previous attempts at cropping in the region. However, difficulties in the timing of farm operations also contributed to past failures. No analysis of the operational aspects of ley farming had been made; this was the objective of this paper. During the transition between wet and dry seasons rainfall is extremely variable. These periods were shown to be the most critical time for operations in ley farming systems. During the dry-wet transition, management of ley pastures is very difficult because pastures must provide grazing for livestock as well as sufficient soil cover for timely sowing of a following crop. Legume pastures have reduced grazing value at this time due to spoilage by early rain. Similarly, during the wet-dry transition annual pastures must be allowed to set seed at a time when crops are yet to be harvested and stubbles are not available for grazing. It was suggested that including separate paddocks of perennial pasture could reduce the demand on annual pastures during the seasonal transitions. A limited number of days to sow a crop combined with severe yield penalties for late sowing restrict the area that can be sown in any season. Sowing opportunities were determined for 3 locations in the Northern Territory. No-tillage was shown to increase the potential number of sowing days. However, the time available to apply glyphosate before sowing using no-tillage was confined to the morning due to risk of afternoon rainshowers reducing efficacy. The number of seasons where a particular crop or cultivar could not be sown was independent of the method of tillage. The wet-dry transition was shown to be important for harvest operations. Our analysis of 3 sites in the Northern Territory suggests that for mungbean and sorghum, later maturity combined with prompt harvest will reduce the risk of poor seed quality due to weathering and could permit earlier sowing. However, for sorghum, an economic assessment of these practices required research that can quantify the interaction between sowing date, time-to-maturity and grain yield.


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 415 ◽  
Author(s):  
P. F. Loke ◽  
E. Kotzé ◽  
C. C. Du Preez

Farmers continuously remove crop residues for use as building materials, fuel and animal feed or bedding as well as to avoid difficulties during tillage operations. Therefore, demonstrations of the benefits of recycling crop residues are necessary. The aim with this study was to evaluate the influence of different wheat production management practices on acidity and some essential nutrients from a long-term trial on a Plinthosol in semi-arid South Africa. The trial was set up in 1979, and since then two methods of straw management (unburned and burned), three methods of tillage (no-tillage, stubble mulch, and plough), two methods of weed control (chemical and mechanical), and three levels of nitrogen (N) fertiliser (20, 40 and 60 kg ha–1) have been applied. Soil samples were collected in June 2010 at depths of 0–50, 50–100, 100–150, 150–250, 250–350 and 350–450 mm from plots that received 40 kg N ha–1 and were analysed for pH, phosphorus (P), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn). Results obtained showed that straw burning resulted in higher P and Mn but lower Cu than no-burning. No-tillage, and to some extent stubble mulch, suppressed soil acidification and increased P and Zn compared with ploughing, especially in the surface layers where crop residues accumulate. In contrast, mouldboard ploughing and stubble mulch increased Cu more than no-tillage, possibly due to the strong affinity of organic matter for Cu. Tillage effects on Mn were inconsistent and difficult to explain. Chemical weeding also improved P, probably because of the pesticide application, but resulted in lower pH and Cu values compared with mechanical weeding. Treatment combinations also had an influence on P and, to a lesser extent, on soil pH and Cu, which might be due to the higher organic matter present in no-tilled soils. Irrespective of straw management or weed-control methods, no-tillage resulted in higher P than did ploughing and stubble mulch. Nutrient concentrations and pH values were sufficient for wheat growth under all treatments. However, although the nutrients were highest under straw burning, no-tillage and, to some extent, stubble mulch, wheat yield was higher with unburned straw and mouldboard ploughing. Therefore, an integrated approach from various disciplines is recommended to identify and rectify yield-limiting factors under conservation tillage systems.


Biologia ◽  
2013 ◽  
Vol 68 (6) ◽  
Author(s):  
Ramon Josa ◽  
Gil Gorchs ◽  
Marta Ginovart ◽  
Albert Solé-Benet

AbstractTopsoil macropores of two plots under no-tillage and conventional tillage were analyzed. A leguminous-cereal rotation was applied for six cycles under dry-land farming system (crop residues were removed). The clay-loam soil shows some vertic characteristics. The main goal is to identify the relationship between the top soil macro and meso-pore distribution for the two tillage systems (at the end of sixth cycle of cultivation) with the annual crop production (rainfall in normal growing period and crop production values are included). Unaltered topsoil samples were taken from 0 to 60 mm (row and interrow positions) and from the immediate depth (60 to 110 mm) in both plots (conventional and no-tillage). The morphometric analyses of 66 polished slices were carried out with the aim to identify differences in soil macro and meso-pore organisation.Soil macropores were classified by size (area) and elongation ratio and by form factor and equivalent pore diameter. No appreciable differences were observed. Soil macro and meso-pore distributions of samples were also compared. The main difference observed between topsoil’s treatments was a different macropore size distribution between topsoil positions. The presence of larger macropores was higher in conventional tillage compared to no-tillage. Samples taken from row and deeper positions of conventional tillage show a somewhat higher amount of macropores in the range between 2 to 2.3 mm equivalent pore diameter. Soil macropores contribute to increase soil aeration and soil drying when topsoil is too wet in critical periods of crop development. Conventional tillage (crop residues removed), provides to the topsoil of a larger lateral and vertical variability of macropore distribution than no-tillage topsoil.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


Sign in / Sign up

Export Citation Format

Share Document