Effects of high temperature on grain growth and on the metabolites and enzymes in the starch-synthesis pathway in the grains of two wheat cultivars differing in their responses to temperature

2003 ◽  
Vol 30 (3) ◽  
pp. 291 ◽  
Author(s):  
Morteza Zahedi ◽  
Rajinder Sharma ◽  
Colin F. Jenner

The effects of a sustained period of moderately high temperature were evaluated on the availability of substrate and the activity of starch synthase (ADP-glucose: 1,4-α-D-glucan 4-α-D-glucosyltransferase, EC 2.4.1.21) in the developing grains of two wheat Triticum aestivum L. cultivars differing in their tolerance to high temperature. Final grain weight was reduced by 33% in the least sensitive (cv. Kavko) and by 40% in the most sensitive (cv. Lyallpur) cultivar as post-anthesis temperature was raised from 20/15°C (day/night) to 30/25°C. The difference in the response of the two cultivars was mainly due to changes in the rate of grain filling at high temperature. The response of the rate of grain filling at high temperature, and the differential effects on the two cultivars, did not seem to be explained by an effect of temperature on the supply of assimilate (sucrose) or on the availability of the substrate for starch synthesis (ADP-glucose) in the grains. In vitro, but not in vivo, the differential responses of the efficiency (Vmax/Km) of soluble starch synthase in the two cultivars to an increase in temperature were associated with differences in the temperature sensitivity of grain filling. In vivo, the most remarkable difference between the two varieties was in the absolute values of the efficiency of soluble starch synthase, with the most tolerant cultivar having the highest efficiency.

1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


1993 ◽  
Vol 20 (2) ◽  
pp. 197 ◽  
Author(s):  
JS Hawker ◽  
CF Jenner

Ears of wheat were exposed for up to 10 days during the grain-filling stage to high temperature (35�C) and activities of five enzymes in the sucrose to starch pathway were compared to those in ears maintained at lower temperature (21�C day/16�C night). Two cultivars of wheat known to differ in their post-anthesis tolerance of high temperature were compared. On a per grain basis, the activity of sucrose synthase and of ADPglucose pyrophosphorylase in ears maintained at 21/16�C throughout did not change greatly between days 16 and 32 after anthesis, whereas UDPglucose pyrophosphorylase and soluble starch synthase activities declined with advancing development. Soluble starch synthase activity in grains of heated ears was decreased within 1 day to about one- half of the value in unheated grains, and 3 days' additional heating did not reduce the activity much further. Insoluble starch synthase activity was not significantly reduced by heating. Compared to soluble starch synthase, ADPglucose pyrophosphorylase activity was more slowly affected and decreased to a lesser extent by heat. Sucrose synthase and UDPglucose pyrophosphorylase activities were either not affected or only slightly reduced; part of this reduction could be due to advanced development at the higher temperature. In recovery experiments ears were heated for brief periods and then returned to 21/16�C for a few days. ADPglucose pyrophosphorylase and soluble starch synthase activities recovered in the cooler conditions but the other two enzymes generally only maintained or lost further activity. From a comparison of the activities of these enzymes with the rate of starch deposition, and by taking into account the effects of heating, it is proposed that the influence of heating on final grain dry weight is attributable to the observed reductions of soluble starch synthase activity.


1998 ◽  
Vol 25 (2) ◽  
pp. 173 ◽  
Author(s):  
M. A. B. Wallwork ◽  
S. J. Logue ◽  
L. C. MacLeod ◽  
C. F. Jenner

Plants of malting barley variety Schooner were exposed to 5 days of high temperatures (up to 35°C) during mid grain filling under controlled environment conditions. Grains from heat treated plants accumulated c. 30% less starch than grains from control plants (21/16°C; 14 h day). Reduced starch deposition was not limited by assimilate levels in heat treated grains, but high temperature reduced the conversion of sucrose to starch. The reduction in starch synthesis appeared to result from the effects of diminished catalytic activity of a number of enzymes in the committed pathway of starch synthesis, and/or delayed recovery of enzyme activity in the cooler recovery conditions. Reductions of 11–75% in the activity of the enzymes under investigation followed high temperature exposure. In addition, ADPglucose pyrophosphorylase, branching enzyme and granule bound starch synthase showed increased activity during exposure to moderate temperatures (28–32°C), but reduced activity at high temperatures, while soluble starch synthase showed an immediate loss of activity, even at moderate temperatures. Sucrose synthase and UDPglucose pyrophosphorylase showed the greatest reduction in catalytic activity after plants were returned to cooler conditions. Individual enzymes showed variation in the level of recovery under the cooler temperature conditions which followed the heating period.


1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


2001 ◽  
Vol 136 (3) ◽  
pp. 257-269 ◽  
Author(s):  
A. AHMADI ◽  
D. A. BAKER

The effect of water stress, commencing from the late cell division period, on in vivo grain growth was studied in relation to grain sucrose, water status and in vitro starch synthesis. Detached ear experiments were conducted to assess the effect of sink dehydration on grain filling processes under non-limiting source conditions. Water stress caused premature grain desiccation and resulted in a marked decline in grain sucrose and reduced grain weight. Both sucrose uptake and conversion to starch in vitro were increased by mild water stress (solute potential (Ψs)−0·8 MPa). However, a decline in Ψs below this optimum resulted in reduced sucrose uptake and starch synthesis not attributable to a reduced supply of sucrose. Stressed grains which failed to accumulate dry matter in vivo showed significant starch synthesis when cultured in vitro. Grains from in situ and osmotically stressed plants showed a lower capacity for starch synthesis in vitro. The results indicate that grain filling processes under stress conditions are limited by (1) low substrate availability and low Ψs within the sink i.e. an unfavourable seed environment (non-lasting effect) and (2) reduced synthetic capacity of the sink (carry-over effect).


1994 ◽  
Vol 21 (6) ◽  
pp. 783 ◽  
Author(s):  
K Denyer ◽  
CM Hylton ◽  
AM Smith

The decrease in yield which is observed when developing storage organs such as cereal grains or potato tubers are exposed to high temperatures is due to a lower final starch content. The rate of starch synthesis during the development of these storage organs at high temperature, is either reduced or fails to increase sufficiently to compensate for the shorter developmental period. This effect on the rate of starch synthesis does not seem to be due to a reduction in the supply of photosynthate. One of the enzymes in the pathway of starch synthesis, soluble starch synthase, is susceptible to heat inactivation at unusually low temperatures and may also have a low optimum temperature for maximum activity. In some storage organs, the maximum catalytic activity of soluble starch synthase is not very much greater than the rate of starch synthesis. A decrease in the activity of this enzyme is therefore, likely to affect the rate of starch synthesis. Thus, the effect of high temperature on the rate of starch synthesis may be due, at least in part, to the properties of this enzyme. This review discusses the unusual heat-sensitivity of starch synthase in the context ofthe effects of high temperature on starch synthesis in storage organs.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1141d-1141
Author(s):  
Han Ping Guan ◽  
Harry W. Janes

Light/dark effects on growth and sugar accumulation in tomato fruit were studied on intact plants (in vivo) and in tissue culture (in vitro). Similar patterns of growth and sugar accumulation were found in vivo and in vitro. Fruit growth in different sugar sources (glucose, fructose or sucrose) showed that sucrose was the primary carbon source translocated into tomato fruit. Darkening the fruit decreased growth about 40% in vivo and in vitro: Light-grown fruit took up 30% more sucrose from the same source and accumulated almost twice as much starch as that in dark-grown fruit. The difference in CO2 exchange rate between light and dark indicated that light effects on fruit growth were due to mechanisms other than photosynthesis. Supporting this conclusion was the fact that light intensities ranging from 40 to 160 μmol/m2/s had no influence on growth and light did not increase growth when fruits were grown on glucose or fructose. A possible expansion of an additional sink for carbon by fight stimulation of starch synthesis during early development will be discussed.


1986 ◽  
Vol 13 (5) ◽  
pp. 605 ◽  
Author(s):  
SS Bhullar ◽  
CF Jenner

Elevated temperature during grain filling resulted in reduced single grain weight due largely to an effect of temperature on the accumulation of starch in the endosperm. Wheat endosperm was cultured in vitro on solutions of [14C]sucrose and the responses to variation in temperature within the range 15-35°C were evaluated in terms of the absorption of radioactive sugar, the evolution of 14CO2, and the incorporation of radioactivity into starch. At 35°C the level of 14C in the intracellular pool of soluble carbohydrate was higher than it was at 30°C, and the average Q,10 for 14CO2 production was 2.1. Incorporation of 14C into starch was greater at 30°C than at 25°C, but at 35°C only half as much [14C]starch was produced compared with that at 30°C. Residual effects of exposure of ears to brief episodes of elevated temperature were investigated by culturing endosperm isolated from such ears on [14C]sucrose at a standard temperature (25°C). Two days of exposure resulted in greater amounts of [14C]starch produced, due to accelerated starch depo- sition, but longer periods (4-6 days) at elevated temperature resulted in substantial reductions in [14C]starch deposition. Exposure to elevated temperature also hastened the onset of chlorophyll degradation in the pericarp of the grain. Two types of response to temperature appear to be involved: a comparatively low temperature optimum for starch synthesis, and an irreversible reduction in the capacity of the endosperm to convert sucrose to starch resulting from exposure of the ears, or the grains themselves, to elevated temperature.


1995 ◽  
Vol 22 (3) ◽  
pp. 391 ◽  
Author(s):  
IF Wardlaw ◽  
L Moncur

Wheat (Triticum aestivum L.) plants were grown to anthesis at 18/13�C day/night and either retained at 18/13�C or transferred to a higher temperature (24/19 or 30/25�C) for the grain-filling period. It was confirmed that high temperature resulted in a considerable drop in kernel dry weight at maturity and there was significant cultivar variation in the degree of the response. ranging from a 30 to 60% decrease in kernel dry weight at maturity for a rise in temperature from 18/13 to 30/25�C. An analysis of the rate and duration of kernel filling of seven cultivars showed that those cultivars most tolerant of high temperature during kernel filling (least reduction of kernel dry weight at maturity) were those where the rate of kernel filling was most enhanced by high temperature, i.e. the increased rate compensated for the reduced duration of kernel filling. The importance of the rate of kernel filling in determining varietal responses to high temperature illustrates the need to isolate the effect of temperature on processes in the kernel during the linear phase of growth.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


Sign in / Sign up

Export Citation Format

Share Document