Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction

2006 ◽  
Vol 33 (11) ◽  
pp. 991 ◽  
Author(s):  
Ryan M. Steeves ◽  
Tim C. Todd ◽  
Juliane S. Essig ◽  
Harold N. Trick

The soybean cyst nematode (SCN), Heterodera glycines, is the major disease-causing agent limiting soybean production in the USA. The current management strategy to reduce yield loss by SCN involves the deployment of resistant soybean cultivars and rotation to non-host crops. Although this management scheme has shown some success, continued yearly yield loss estimates demonstrate the limitations of these techniques. As a result, new control strategies are needed to complement the existing methods. Reported here is a novel method of SCN control that utilises RNA interference (RNAi). Transgenic soybeans were generated following transformation with an RNAi expression vector containing inverted repeats of a cDNA clone of the major sperm protein (MSP) gene from H. glycines. The accumulation of MSP-specific short interfering RNA (siRNA) molecules were detected by northern blot analysis of transgenic soybeans. T0 plants displaying MSP siRNA accumulation were deployed in a bioassay to evaluate the effects of MSP interfering molecules on H. glycines reproduction. Bioassay data has shown up to a 68% reduction in eggs g–1 root tissue, demonstrating that MSPi transgenic plants significantly reduced the reproductive potential of H. glycines. An additional bioassay evaluating progeny nematodes for maintenance of reproductive suppression indicated that progeny were also impaired in their ability to successfully reproduce, as demonstrated by a 75% reduction in eggs g–1 root tissue. The results of this study demonstrate the efficacy of an RNAi-based strategy for control of the soybean cyst nematode. In addition, these results may have important implications for the control of other plant parasitic nematodes.

2018 ◽  
Author(s):  
Rick Masonbrink ◽  
Tom R. Maier ◽  
Usha Muppiral ◽  
Arun S. Seetharam ◽  
Etienne Lord ◽  
...  

AbstractHeterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulentH. glycinespopulations. The parasitic success ofH. glycinesrelies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted byH. glycinesinto host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. Here, we use PacBio long-read technology to assemble aH. glycinesgenome of 738 contigs into 123Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7Mb), and horizontal gene transfer events (151 genes). Using previously published effector sequences, the newly generatedH. glycinesgenome, and comparisons to other nematode genomes, we investigate the evolutionary mechanisms responsible for the emergence and diversification of effector genes.


Nematology ◽  
2012 ◽  
Vol 14 (5) ◽  
pp. 589-593 ◽  
Author(s):  
Ramin Heydari ◽  
Zahra Tanha Maafi ◽  
Ebrahim Pourjam

The soybean cyst nematode, Heterodera glycines, is of major economic importance and widely distributed throughout the world. The effect of H. glycines HG Type 0 on seed yield of susceptible and resistant soybean cultivars was assessed with and without nematicide application in two naturally infested fields in Iran. Soybean cvs BP (susceptible) and DPX (resistant) were arranged in a randomised complete block design and fenamiphos 10G was used in-furrow as a treatment. The population levels of eggs and second-stage juveniles of H. glycines were determined in soil samples collected at planting and harvesting time. Although no above-ground symptoms of nematode infection were visible, mean yield was 48% greater for the resistant cultivar compared with the susceptible cultivar. The yield of cv. BP increased by 16% in plots treated with fenamiphos compared with untreated plots. The resistant cultivar suppressed the reproduction rate of H. glycines. Seed composition, including protein and oil, did not show significant differences between resistant and susceptible cultivars. This is the first demonstration of the yield loss caused by the soybean cyst nematode in Iran.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jingsheng Chen ◽  
Yuanyuan Zhou ◽  
Yuanyuan Wang ◽  
Haiyan Fan ◽  
Xiaoyu Liu ◽  
...  

Knowledge about virulent phenotypes of Heterodera glycines Ichinohe, 1952 (soybean cyst nematode, SCN) is essential for breeding resistant cultivars and managing this nematode. Heilongjiang Province is the major soybean producing region in China. SCN has been reported in 63 regions in Heilongjiang Province. To determine the prevalence and virulence of phenotypes of SCN, 112 soil samples were collected from soybean fields throughout the province in 2015. SCN was detected in 62 samples (55.4%) of these samples, with population densities ranging from 150 to 41,750 eggs and juveniles per 100 cm3 of soil. Eleven HG types, namely HG 0, 1.2.3.5.7, 1.2.3.7, 1.3.4.7, 1.3.7, 2, 2.5.7, 2.7, 6, 6.7, and 7, were detected. The percentages of SCN populations with female indices greater than ten ranged from 4.8% for PI 437654 to 64.5% for PI 548316. This is the first report of seven of the HG types from Heilongjiang. These results provide guidance for breeding efforts and control strategies to combat SCN.


2014 ◽  
Vol 15 (2) ◽  
pp. 85-87 ◽  
Author(s):  
Gregory L. Tylka ◽  
Christopher C. Marett

The soybean cyst nematode (Heterodera glycines) is considered the most damaging pathogen of soybean in the USA and Canada, and causes considerable yield loss in many other soybean-producing countries. It is believed to have been introduced into North America from Asia. The map of the known distribution of H. glycines in the USA and Canada has been updated for 2014. Maps of its known distribution in past years illustrate the spread of the pathogen since its initial discovery in the United States in 1954. Accepted for publication 20 April 2014. Published 27 May 2014.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Rick Masonbrink ◽  
Tom R Maier ◽  
Arun S Seetharam ◽  
Parijat S Juvale ◽  
Levi Baber ◽  
...  

AbstractSoybean is an important worldwide crop, and farmers continue to experience significant yield loss due to the soybean cyst nematode (SCN), Heterodera glycines. This soil-borne roundworm parasite is rated the most important pathogen problem in soybean production. The infective nematodes enter into complex interactions with their host plant by inducing the development of specialized plant feeding cells that provide the parasites with nourishment. Addressing the SCN problem will require the development of genomic resources and a global collaboration of scientists to analyze and use these resources. SCNBase.org was designed as a collaborative hub for the SCN genome. All data and analyses are downloadable and can be analyzed with three integrated genomic tools: JBrowse, Feature Search and BLAST. At the time of this writing, a number of genomic and transcriptomic data sets are already available, with 43 JBrowse tracks and 21 category pages describing SCN genomic analyses on gene predictions, transcriptome and read alignments, effector-like genes, expansion and contraction of genomic repeats, orthology and synteny with related nematode species, Single Nucleotide Polymorphism (SNPs) from 15 SCN populations and novel splice sites. Standard functional gene annotations were supplemented with orthologous gene annotations using a comparison to nine related plant-parasitic nematodes, thereby enabling functional annotations for 85% of genes. These annotations led to a greater grasp on the SCN effectorome, which include over 3324 putative effector genes. By designing SCNBase as a hub, future research findings and genomic resources can easily be uploaded and made available for use by others with minimal needs for further curation. By providing these resources to nematode research community, scientists will be empowered to develop novel, more effective SCN management tools.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Sign in / Sign up

Export Citation Format

Share Document