Dehydrins in Lupinus albus: pattern of protein accumulation in response to drought

2008 ◽  
Vol 35 (1) ◽  
pp. 85 ◽  
Author(s):  
Carla Pinheiro ◽  
Maria H. Cruz de Carvalho ◽  
Dorothea Bartels ◽  
Cândido Pinto Ricardo ◽  
M. Manuela Chaves

Dehydrins (DHNs) are proteins that accumulate abundantly in various plant tissues in response to environmental stresses and during seed maturation, possibly assisting cells in tolerating dehydration. White lupins (Lupinus albus L.) are able to withstand periods of severe water deficit (WD) and previous work suggested that the stem plays a central role as a survival structure. To investigate DHNs involvement in this strategy, we studied tissue specific protein accumulation of a RAB16-like DHN in lupin during a progressive WD and early recovery. Differences were found between leaves, stems and roots. In leaves and roots, the accumulation of the RAB16-like DHN was independent of the water status whereas in the stem (cortex and stele), DHNs were only detected under severe plant WD (stele relative water content, RWC, reduction of 6–7% and cortex RWC reduction of 20%). DHN mRNA analysis by RT–PCR, showed the presence of one DHN mRNA regardless of the tissue or the plant water status.

2008 ◽  
Vol 63 (1-2) ◽  
pp. 101-104 ◽  
Author(s):  
Konstantina V. Kocheva ◽  
Georgi I. Georgiev

The amino acid proline is accumulated in plant tissues in response to a variety of stresses. The existence of two routes for its biosynthesis is well documented. However, little is known about the contribution of each pathway to the accumulation of free proline under stress conditions. In the present study young barley plants were subjected to osmotic stress by treating their roots with 25% polyethylene glycol. Prior to stress imposition roots were incubated for 24 h in nutrient solution containing proline or one of its metabolic precursors: glutamate and ornithine. Free proline quantity in the leaves was measured before and after stress. Relative water content (RWC) was used as a measure of the plant water status. Foliar proline levels showed a significant increase in ornithine- and proline-pretreated plants compared to the control. Nevertheless, no considerable changes in leaf RWC were observed. It was shown that before stress application only ornithine but not glutamate was immediately metabolized to proline. Under stress conditions, however, both precursors were converted into proline. The possible role of this amino acid in the processes of post stress recovery is discussed.


2020 ◽  
Vol 9 (5) ◽  
pp. e97953269
Author(s):  
Ediglécia Pereira Almeida ◽  
Antonio Lucineudo de Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Cheila Deisy Ferreira ◽  
George Martins França ◽  
...  

This study aimed to evaluate the effects of potassium fertilization on Myracrodruon urundeuva, Libidibia ferrea and Mimosa tenuiflora seedlings submitted to a short period of water deficit. Three doses of K (0, 150 and 300 mg dm-3 KCl) and three water regimes (without water deficit, moderate water deficit and severe water deficit) were evaluated. The plants were kept in black plastic bags containing soil from the Caatinga and, 30 days after the beginning of the water regimes, the relative water content (RWC), transpiration (E), stomatal conductance (gs) and photosynthesis (A) were evaluated. High moisture content in the soil was unfavorable to plants, promoting reduction in RWC and gas exchange. The water deficit increase E, gs and A, but the intensity of these responses was variable between species. The water deficit favored L. ferrea, with elevated RWC and reduced alterations in gas exchange, demonstrating its greater tolerance in relation to the others species evaluated, however it was the species most benefited by K. The supply of 300 mg dm-3 of KCl positively influenced the water status and gas exchange of the studied species with an increase in the water deficit. We suggest the development of research subjecting the plants to a longer period of time, in order to establish a better relationship between potassium and the increased tolerance of these plants to water deficit.


1994 ◽  
Vol 72 (05) ◽  
pp. 762-769 ◽  
Author(s):  
Toshiro Takafuta ◽  
Kingo Fujirmura ◽  
Hironori Kawano ◽  
Masaaki Noda ◽  
Tetsuro Fujimoto ◽  
...  

SummaryGlycoprotein V (GPV) is a platelet membrane protein with a molecular weight of 82 kD, and one of the leucine rich glycoproteins (LRG). By reverse transcription-polymerase chain reaction (RT-PCR), GPV cDNA was amplified from mRNA of platelets and megakaryocytic cell lines. However, since there are few reports indicating whether GPV protein is expressed in megakaryocytes as a lineage and maturation specific protein, we studied the GPV expression at the protein level by using a novel monoclonal antibody (1D9) recognizing GPV. Flow cytometric and immunohistochemical analysis indicated that GPV was detected on the surface and in the cytoplasm of only the megakaryocytes in bone marrow aspirates. In a megakaryocytic cell line UT-7, GPV antigen increased after treatment with phorbol-12-myri-state-13-acetate (PMA). These data indicate that only megakaryocytes specifically express the GPV protein among hematopoietic cells and that the expression of GPV increases with differentiation of the megakaryocyte as GPIb-IX complex.


2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Saraswati Prabawardani

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal" style="text-align: justify;"><span style="font-size: 10pt;">The measurement of plant water status such as leaf water potential (LWP) and leaf relative water content (RWC) is important part of understanding plant physiology and biomass production. Preliminary study was made to determine the optimum amount of leaf abrasion and equilibration time of sweet potato leaf inside the thermocouple psychrometer chambers. Based on the trial, the standard equilibration time curve of a Peltier thermocouple for sweet potato leaf was between 2 and 3 hours. To increase the water vapour conductance across the leaf epidermis the waxy leaf cuticle should be removed or broken by abrasion. The result showed that 4 times leaf rubbings was accepted as the most effective way to increase leaf vapour conductance of sweet potato in the psychrometer chambers. In calculating the leaf relative water content, unstressed water of sweet potato leaves require 4 hours imbibition, whereas water stressed of sweet potato leaves require 5 to 6 hours to reach the saturation time. Either leaf water potential or relative water content can be used as a parameter for plant water status in sweet potato.</span><span style="font-size: 10pt;"> </span></p>


1987 ◽  
Vol 17 (10) ◽  
pp. 1228-1233 ◽  
Author(s):  
Joanna T. Tippett ◽  
Joanne L. Barclay

A new instrument, the plant impedance ratio meter (PIRM), has been used to determine the extent of lesions caused by Phytophthoracinnamomi Rands in Eucalyptusmarginata Sm. The performance of the PIRM, which measures electrical admittance (the inverse of impedance) of plant tissues at two frequencies (from which an impedance ratio is calculated), was evaluated and compared with that of the Shigometer. The electrical admittance measured at 1 and 10 kHz (PIRM) and the electrical resistance (Shigometer) of healthy tissue varied with both the depth of tissue probed and the water status of stems. However, the impedance ratios (calculated from the admittance values) remained relatively constant for healthy tissue and changes were independent of depth of probing. Hence, changes in ratios indicated a change in tissue condition or necrosis rather than changes in either tissue water content or depth of probing. The impedance ratios recorded for healthy bark tissues were consistently higher than those for the P. cinnamomi lesions in E. marginata. Trends in electrical resistance measured across the boundaries of the lesions with the Shigometer were variable depending on lesion age. The PIRM was used successfully to detect P. cinnamomi lesions in E. marinate and lesion fronts were predicted to an accuracy of ± 7.2 mm (n = 150), lesions being up to 1.0 m long at the time stems were harvested.


2019 ◽  
Vol 18 (6) ◽  
pp. 75-84
Author(s):  
Alireza Motallebi-Azar ◽  
István Papp ◽  
Anita Szegő

Dehydrins are proteins that play a role in the mechanism of drought tolerance. This study aimed at establishing dehydrin profile and accumulation in four local melon varieties of Iran: Mino, Dargazi, Saveii, and Semsori, as well as in a commercial variety Honeydew. Plants were treated with drought stress by adjusting the soil water content to 75, 50, 40, 30 and 20% of field capacity (FC) by withholding water. Water status of plants was monitored based on the seedling fresh weight (FW) and relative water content of leaves (RWC). Total protein content was extracted, then heat-stable protein (HSP) fraction was isolated for each variety and water stress treatment. After SDS-PAGE of HSP, Western blotting analysis was carried out with Anti-dehydrin rabbit (primary) and Goat anti rabbit (secondary) antibodies. ANOVA results showed that with decreasing FC below 75%, FW and RWC decreased, but these changes significantly varied among genotypes. On the basis of FW and RWC data under different drought stress treatments, the following drought-tolerant ranking was established: Mino > Dargazi > Saveii and Honeydew > Semsori, from tolerant to sensitive order. Results of Western blot analysis showed that expression of some proteins with molecular weights of 19–52 kDa was induced in the studied varieties under drought stress (% FC). Expression level of the dehydrin proteins in different varieties was variable and also depending on the drought stress level applied. However, dehydrin proteins (45 and 50 kDa) showed strong expression levels in all varieties under severe drought stress (20% FC). The abundance of dehydrin proteins was higher in tolerant varieties (Mino and Dargazi) than in moderate and drought sensitive genotypes. Consequently, dehydrins represent a potential marker for selection of genotypes with enhanced drought tolerance.


2020 ◽  
Author(s):  
Gerard Sapes ◽  
Anna Sala

AbstractPredicted increases in forest drought mortality highlight the need for predictors of incipient drought-induced mortality (DIM) risk that enable proactive large-scale management. Such predictors should be consistent across plants with varying morphology and physiology. Because of their integrative nature, indicators of water status are promising candidates for real time monitoring of DIM, particularly if they standardize morphological differences among plants. We assessed the extent to which differences in morphology and physiology between Pinus ponderosa populations influence time to mortality and the predictive power of key indicators of DIM risk. Time to incipient mortality differed between populations but occurred at the same relative water content (RWC) and water potential (WP). RWC and WP were more accurate predictors of drought mortality risk than other physiological indicators, including non-structural carbohydrate (NSC) content and percent loss of conductivity (PLC). These results highlight that variables related to water status capture critical thresholds during DIM and the associated dehydration processes. Both WP and RWC are promising candidates for large-scale assessments of DIM risk. RWC is of special interest because it allows comparisons across different morphologies and can be remotely sensed. Our results offer promise for real time landscape-level monitoring of DIM and its global impacts.


1999 ◽  
Vol 133 (2) ◽  
pp. 141-150 ◽  
Author(s):  
G. F. J. MILFORD ◽  
I. F. SHIELD ◽  
H. J. STEVENSON ◽  
T. SCOTT ◽  
J. E. LEACH

Pod and seed growth were studied in two experiments in which the plant's source-sink relationships were modified by (a) manually pruning an autumn-sown, indeterminate white lupin variety, Lunoble, to a determinate form, and (b) by growing a determinate variety, Lucyane, at densities ranging from 7 to 35 plants/m2. The pruning experiments indicated that the faster pod growth rate of determinate genotypes was not an inherent genetic trait but an indirect physiological consequence of the plant's changed architecture. In the density experiment, crop dry matter (DM) and nitrogen (N) were maximum at the end of pod extension in late July and similar across the plant density range at c. 12 t DM and 320 kg N/ha. Therefore, the amount of dry matter per plant decreased proportionately with the increase in plant number. The DM and N contents of the pod walls were also maximum at the end of pod extension, but seeds contained only a third of their final DM and a quarter of their final N. Protein accumulation during the final stages of seed growth, therefore, depended on the remobilization of nitrogen from other plant organs, primarily the leaves and pod walls. Nitrogen withdrawn from the leaves accounted for 44% of the gain in the pods, and N withdrawn from pod walls for 50–60% of the gain in the seed.Seed number/m2 was the major yield component. Seeds and pods mainly aborted during early development, but seed number per pod was also decreased by some seed abortion after full pod extension, especially in first-order pods of plants grown at high density. The number of late-aborted seeds was negatively correlated with the amount of N remobilized from the pod wall. In determinate lupins, which have highly synchronous flowering and pod development, the large and sudden remobilization of nitrogen from leaves and pod walls for seed growth and protein accumulation triggered crop senescence.


Sign in / Sign up

Export Citation Format

Share Document